Eyong, jequtiba ve koto ağaç türlerinde renk, parlaklık ve shore D sertlik değerleri üzerine ısıl işlemin etkisi

Günümüzde ahşap malzemelere uygulanan birçok farklı ısıl işlem metotları bulunmaktadır. Ahşaba ait çeşitli özellikler (fiziksel, mekanik, biyolojik, kimyasal, renk, parlaklık, yüzey pürüzlülüğü, ıslanabilirlik, vb.) ısıl işlem uygulaması ile değişmektedir. Bu durum ahşap malzeme için yeni kullanım alanlarının oluşmasına yardım etmektedir. Eyong (Eribroma oblonga), jequitiba (Cariniana legalis (Mart.) Kuntze) ve koto (Pterygota macrocarpa K. Schum.) yabancı ağaç türleri yurt dışında mobilya sektöründe önemli değere sahip olmaktadır. Bu araştırmada, eyong, jequitiba, koto odun türlerine ait deney örneklerine 200oC’de 3 saat süre ile uygulanan ısıl işlem sonrası meydana gelen renk (sarı renk tonu: b*, kırmızı renk tonu: a* ve ışıklılık: L*), parlaklık (20o, 60o ve 85o’de liflere paralel //) ve shore D sertlik değerleri belirlenmiştir. Elde edilen sonuçlara göre, varyans analizleri bütün testler için anlamlı olarak elde edilmiştir. Isıl işlemden sonra bütün ağaç türlerinde b*, L*, parlaklık değerleri ve shore D sertlik değerlerinin azaldığı görülmüştür. ∆E* değerleri eyong, koto ve jequitiba odunlarında sırasıyla 39.72, 36.70 ve 34.36 olarak elde edilmiştir. 

Effect of heat treatment on color, glossiness and shore D hardness values of eyong, jequtiba and koto wood species

Today, there are many different heat treatment methods applied to wood materials. Various properties of wood (physical, mechanical, biological, chemical, color, gloss, surface roughness, wettability, etc.) change with the application of heat treatment. This situation helps to create new usage areas for wood material. Foreign tree species of eyong (Eribroma oblonga), jequitiba (Cariniana legalis (Mart.) Kuntze) and koto (Pterygota macrocarpa K. Schum.) have an important value in the furniture industry abroad. In this research, the color (yellow color tone: b*, red color tone: a* and lightness: L*), glossiness (parallel // to the fibers at 20o, 60o and 85o) and shore D hardness values that occur after the heat treatment applied at 200oC for 3 hours on the test samples belonging to the eyong, jequitiba, koto wood types were determined. According to the results obtained, variance analysis was obtained significantly for all tests. It was observed that b*, L*, glossiness values and shore D hardness values decreased in all wood species after heat treatment. ∆E* values were obtained as 39.72, 36.70, and 34.36 in eyong, koto and jequitiba woods, respectively.

___

  • Abbiw, D.K., (1990), Useful plants of Ghana: West African use of wild and cultivated plants, Intermediate Technology Publications, The Royal Botanic Gardens, Kew, Richmond, UK.
  • Adela-Salca, E., Hiziroglu, S., (2014), Evaluation of hardness and surface quality of different wood species as function of heat treatment, Materials & Design, 62, 416-423. DOI: 10.1016/j.matdes.2014.05.029.
  • Aggrey-Smith, S., Preko, K., Owusu, F.W., (2016), Study of thermal properties of some selected tropical hard wood species, International Journal of Materials Science and Applications, 5(3), 143-150. DOI: 10.11648/j.ijmsa.20160503.15.
  • Anonim, (1956), British Forest Products Research Laboratory, A Handbook of Hardwoods. Department of Scientific and Industrial Research, Forest Products Research, Her Majesty’s Stationery Office, London, 269 pp.
  • Anonim, (1997), Brazilian Association of Technical Standards (ABNT), NBR 7190, Design of Timber Structures, Rio de Janeiro, p. 52.
  • Anonim, (2000), Product standard PS 20-70, United States Department of Commerce, U.S. Government Printing Office, Washington, DC, pp: 296.
  • ASTM D 2240, (2010), Standard test method for rubber property-durometer hardness, American Society for Testing and Materials, West Conshohocken, Pennsylvania, United States.
  • ASTM D 2244-3, (2007), Standard practice for calculation or color tolerances and color, differences from instrumentally measured color coordinates, ASTM International, West Conshohocken, PA.
  • Ayarkwa, J., (1998), The influence of site and axial position in the tree on the density and strength properties of the wood of Pterygota macrocarpa K. Schum, Ghana Journal of Forestry, 6, 3-41.
  • Ayata, U., Gurleyen, T., Gurleyen, L., (2018), Effect of heat treatment on color and glossiness properties of zebrano, sapeli and merbau woods, Furniture and Wooden Material Research Journal, 1(1), 11-20. DOI: 10.33725/mamad.428913.
  • Ayata, Ü., (2019), Effects of artificial weathering on the surface properties of ultraviolet varnish applied to lemonwood (Citrus limon (L.) Burm.), Bioresources, 14(4), 8313- 8323. DOI: 10.15376/biores.14.4.8313-8323.
  • Ayata, Ü., (2020), Ayous odununun bazı teknolojik özelliklerinin belirlenmesi ve ısıl işlemden sonra renk ve parlaklık özellikleri, Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 3(1), 22-33. DOI: 10.33725/mamad.724596.
  • Burkill, H.M., (1985), The useful plants of West tropical Africa, 2nd edition, Royal Botanic Gardens, Kew, UK.
  • Cademartori, P.H.G., Mattos, B.D., Missio, A.L., Gatto, D.A., (2014), Colour responses of two fast-growing hardwoods to two-step steam-heat treatments, Materials ResearchIbero-American Journal of Materials, 17(2), 487-493. DOI: 10.1590/s 1516- 14392014005000031.
  • Can, A., (2020). Effects of heat treatment systems on the physical properties of coated Scots pine (Pinus sylvestris L.) and Poplar (Populus euramericana), BioResources, 15(2), 2708-2720.
  • Chen, Y., Fan, Y.M., Gao, J.M., Stark, N.M., (2012a), The effect of heat treatment on the chemical and color change of black locust (Robinia pseudoacacia) wood flour, BioResources, 7(1), 1157-1170.
  • Chen, Y., Gao, J., Fan, Y., Tshabalala, M.A., Stark, N.M., (2012b), Heat-induced chemical and color changes of extractive-free black locust (Robinia pseudoacacia) wood, BioResources, 7(2), 2236-2248. DOI: 10.15376/biores.7.2.2236-2248.
  • Çamlıbel, O., Ayata, Ü., (2020), Monkey pod odununda yüzey pürüzlülüğü parametrelerinin ve shore-D sertlik değerinin belirlenmesi, Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 3(2), 93-100. DOI: 10.33725/mamad.827211.
  • Dubey, M.K., Pang, S., Walker, J., (2011), Changes in chemistry, color, dimensional stability and fungal resistance of Pinus radiata D. Don wood with oil heat-treatment, Holzforschung, 66, 49-57.
  • Esteves, B., Marques, A.V., Domingos, I., Pereira, H. (2008a), Heat-induced colour changes of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood, Wood Science and Technology, 42(5), 369-384. DOI: 10.1007/s00226-007-0157-2.
  • Esteves, B.M., Domingos, I.J., Pereira, H.M., (2008b), Pine wood modification by heat treatment in air, BioResources, 3(1), 142-154.
  • Gierlinger, N., Jacques, D., Grabner, M., Wimmer, R., Schvvanninger, M., Rozenberg, P., Paques, L.E., (2004), Colour of larch heartwood and relationships to extractives and brown-rot decay resistance, Trees-Structure and Function, 18(1), 102-108. DOI: 10.1007/s00468-003-0290-y.
  • Gürleyen, T., Ayata, Ü., Gürleyen, L., Esteves, B., Sivrikaya, H., ve Can, A., (2017), ThermoWood metoduna göre ısıl işlem görmüş santos, gül ve üvez odunlarında renk ve parlaklık özelliklerinin belirlenmesi, 2. Uluslararası Malzeme Bilimi ve Teknolojisi Konferansı Kapadokya (IMSTEC 2017), 11-13 Ekim, Nevşehir, Türkiye, 401-407.
  • Hall, J.B., Swaine, M.D., (1981), Geobotany: Distribution and ecology of vascular plants in a tropical rain wrest, Forest Vegetation in Ghana, W. Junk Publishers, The Haque.
  • Hill, C., (2006), Wood modification: chemical, thermal and other processes, John Wiley and Sons, Chichester, UK.
  • Hon, D.N.S., Minemura, N., (2001), Color and discoloration, in: Wood and Cellulosic Chemistry 2nd Ed., Marcel Dekker, New York, USA , pp. 385-442.
  • Irvine, F.R., (1961), Woody plants of Ghana, Oxford University Press, London, UK.
  • ISO 2813, (1994), Paints and varnishes - determination of specular gloss of non-metallic paint films at 20 degrees, 60 degrees and 85 degrees, International Organization for Standardization, Geneva, Switzerland.
  • ISO 554, (1976), Standard atmospheres for conditioning and/or testing, International Standardization Organization, Geneva, Switzerland.
  • Kageyama, P.Y., Sebbenn, A.M., Ribas, L.A., Gandara, F.B., Castellen, M., Perecim, M.B., Vencovsky, R., (2003), Genetic diversity in tropical tree species from different successional stages determined with genetic markers, Scientia Forestalis, 64, 93-107.
  • Kamperidou, V., Barmpoutis, P., (2015), Correlation between the changes of colour and mechanical properties of thermally modified scots pine (Pinus Sylvestris L.) wood, Pro Ligno, 11(4), 360-365.
  • Kouadio, K., N’guessan, K., Kouassi, K.H., Ettien, K.B.R., (2013), Initial growth of Pterygota macrocarpa Schumann (Sterculiaceae) depending of the light intensity in Côte d’Ivoire, Journal of Applied Biosciences, 68, 5356-5365.
  • Lorenzi, H., (2002), Árvores Brasileiras: Manual de Identificação e Cultivo das Plantas Arbóreas do Brasil. 4th edition. Instituto Plantarum, Nova Odessa, 368 pp.
  • Louppe, D., Oteng-Amoako, A.A., Brink, M., (2008), Plant Resources of Tropical Africa, 7(1), Timbers 1, PROTA Foundation. Wageningen, Netherlands / Backhuys Publishers, Leiden, Netherlands/CTA, Wageningen, Netherlands. 704 pp.
  • Mburu, F., Dumarcay, S., Bocquet, J.F., Petrissans, M., Gerardin, P., (2008), Effect of chemical modifications caused by heat treatment on mechanical properties of Grevillea robusta wood, Polymer Degradation and Stability, 93, 401-405.
  • Militz, H., (2002), Thermal treatment of wood: European processes and their background, In: The 33rd annual meeting, proceedings, IRG/WP 02-40241. Cardiff, Wales; p. 1-17.
  • Mitani, A., Barboutis, I., (2014), Changes caused by heat treatment in color and dimensional stability of beech (Fagus sylvatica L.) wood, Drvna Industrija, 65(3), 225-232. DOI: 10.5552/drind.2014.1250.
  • Mori, F.A., Mendes, L.M., Trugilho, P.F., Cardoso, M.G., (2003), Use of wood of Eucalyptus sp and native in the storage of the sugar cane spirit, Food Science and Technology, 23(3), 396-400. DOI: 10.1590/S0101-20612003000300018.
  • Paradis S., Guibal, D., Gérard, J., Beauchêne, J., Brancheriau, L., Cabantous, B., Châlon I., Daigremont, C., Détienne, P., Fouquet, D., Langbour, P., Lotte, S., Méjean, C., Parant, B., Thévenon, M., Thibaut, A., Vernay, M., (2015), TROPIX 7.5.1: caractéristiques technologiques de 245 essences tropicales et tempérées. Montpellier: CIRADPERSYST, 1 p. N° de certification: IDDN.FR.001.070032.002.S.P.2002.000.30615 ISBN 978-2-87614-680-8.
  • Poncsak, S., Kocaefe, D., Bouazara, M., Pichette, A., (2006), Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera), Wood Science and Technology, 40(8), 647-663. DOI: 10.1007/s00226-006-0082-9.
  • Ruffo, C.K., Birnie, A., Tengnas, B., (2002), Edible plants of Tanzania. RELMA Technical Handbook Series 27, Nairobi, Kenya: Regional Land Management Unit, Swedish International Development Cooperation Agency (Sida), 766 p.
  • Sebbenn, A.M., Kageyama, P.Y., Siqueira, A.C.M.F., Zanatto, A.C.S., (2000), Mating system in populations of Cariniana legalis Mart. O. Ktze: Implications for genetics conservation and improvement, Scientia Forestalis, 58, 25-40.
  • Sivrikaya, H., Can, A., de Troya, T., Conde, M., (2015b), Comparative biological resistance of differently thermal modified wood species against decay fungi, Reticulitermes grassei and Hylotrupes bajulus, Maderas. Ciencia y tecnología, 17(3), 559-570.
  • Sivrikaya, H., Ekici, E., Can, A., Taşdelen, M., Gökmen, K., (2015a), Effect of heat treatment on the weathering and hardness properties of some wood species, Proceedings of the 11th Meeting of the Northern European Network for Wood Sciences and Engineering (WSE), 83-91.
  • Sivrikaya, H., Tesařová, D., Jeřábková, E., Can, A., (2019), Color change and emission of volatile organic compounds from Scots pine exposed to heat and vacuum-heat treatment, Journal of Building Engineering, 26, 100918.
  • Sweet, M.S., Winandy, J.E., (1999), Influence of degree of polymerization of cellulose and hemicellulose on strength loss in fire-retardant-treated southern pine, Holzforschung, 53(3), 311-317. DOI: 10.1515/hf. 1999.051.
  • Şanıvar, N., Zorlu, İ., (1980), Ağaç işleri gereç bilgisi temel ders kitabı, Mesleki Ve Teknik Öğretim Kitapları, Milli Eğitim Basımevi, İstanbul, Etüd ve Programlama Dairesi Yayınları No: 43, 472 sayfa.
  • Taylor, C.J., (1960), Synecology and silviculture in Ghana, The University College of Ghana, Nelson and Sons Ltd, London, UK.
  • Uphof, J.C.T., (1959), Dictionary of economic plants, Weinheim, H.R., Engelmann (J. Cramer), New York: Hafner Publishing Co., Codicote, Herts: Wheldon and Wesley, Ltd.
  • Yıldız, S., Can, A., (2012), Corrosion properties of heat treated spruce, European Black Pine, Beech and Poplar wood species. I. In National Mediterranean Forest and Environment Symposium, KSU J. Engineering Sci., Special (No. 62-68).
Mobilya ve ahşap malzeme araştırmaları dergisi (Online)-Cover
  • ISSN: 2636-8625
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2018
  • Yayıncı: Bekir Cihad Bal