EVALUATION OF TOTAL ORGANIC CARBON REMOVAL EFFICIENCY IN SANLIURFA DRINKING WATER TREATMENT PLANT

EVALUATION OF TOTAL ORGANIC CARBON REMOVAL EFFICIENCY IN SANLIURFA DRINKING WATER TREATMENT PLANT

5.8 billion cubic meters of water is drawn from the water resources in Turkey for drinking and potable water network, according to the Turkey Statistical Institute's 2016 Municipal Water Statistics results. 92.9% of this water by conventional treatment methods, 6.1% by advanced treatment techniques and 1% by physical treatment methods is treated. Conventional drinking water treatment plants generally include oxidation, pretreatment, chemical treatment (coagulation-flocculation-sludge), filtration and disinfection units. The same treatment units are used in Sanliurfa drinking water treatment plant which is the subject of the present study. Total Organic Carbon (TOC) is one of the water quality determination methods such as BOD and COD. It refers to organic substances dissolved or suspended in water. With this study; the treatment efficiency of Sanliurfa drinking water treatment plant was evaluated according to TOC parameter. The TOC removal efficiency performance evaluation of treatment plant was made by comparing experimental data for January-May period.  According to this; average efficiency was determined as 28.51%.  As a result, this performance value is concluded to be an average treatment efficiency for such conventional drinking water treatment plants.

___

  • [1] Ledesma, J.L.J., Köhler, S.J., Futter, M.N., ‘‘Long-term dynamics of dissolved organic carbon: Implications for drinking water supply’’, Science of the Total Environment, 432, 1-11, 2012.
  • [2] Anonymous, ‘‘Türkiye’de İçme Suyu Arıtımı, Yaşanan Problemler ve Çözüm Önerileri Kitabı’’, Orman Su İşleri Bakanlığı, Ankara, pp.114, 2017.
  • [3] Niu, Z., Hu, X., Zhang, Y., Sun, Y., ‘‘Effect of chlorine dosage in prechlorination on trihalomethanes and haloacetic acids during water treatment process’’, Environmental Science and Pollution Research International, 24, 5068-5077, 2016.
  • [4] Nieto-Sandoval, J., Munoz, M., Pedro, Z.M., Casas, J.A., ‘‘Catalytic hydrodechlorination as polishing step in drinking water treatment for the removal of chlorinated micropollutants’’, Separation and Purification Technology,227,115717, 2019.
  • [5] Kumar, P., Hegde, K., Brar, S.K., Cledon, M., Kermanshahi, A., ‘‘Physico-chemical treatment for the degradation of cyanotoxins with emphasis on drinking water treatment-How far have we come?’’, Journal of Environmental Chemical Engineering, 6,5369-5388, 2018.
  • [6] Rule, K.L., Ebbett, V.R., Vikesland, P., ‘‘Formation of chloroform and chlorinated organics by free-chlorine-mediated oxidation of triclosan’’, Environmental Science and Technology, 39, 3176-3185, 2005.
  • [7] Soufan, M., Deborde, M., Legube, B., ‘‘Aqueous chlorination of diclofenac: kinetic study and transformation products identification’’, Water Research, 46, 3377-3386, 2012.
  • [8] ODriscoll, C., Sheahan, J., Renou-Wilson, F., Croot, P., Pilla, F., Misstear, B., ‘‘National scale assessment of total trihalomethanes in Irish drinking water’’, Journal of Environmental Management, 212,131-141, 2018.
  • [9] Benner, J., Helbling, D.E., Kohler, H., Wittebol, J., Brezina, E., Prasse, C., Ternes, T., Albers, C.N., Aamand, J., Horemans, B., Springael, D., Walravens, E., Boon, N., ‘‘Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes?’’, Water Research, 47, 5955-5976, 2013.
  • [10] Bond, T., Huang, J., Templeton, M.R., Graham, N., ‘‘Occurrence and control of nitrogenous disinfection by-products in drinking water - a review’’, Water Research, 45, 4341-4354, 2011.
  • [11] Yıldız, N., ‘‘Şanlıurfa İçme Suyu Sisteminin Kalite Kontrol Parametreleri Açısından İncelenmesi’’, Harran Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Şanlıurfa, pp.75, 1996.
  • [12] Kırıkçı, A., ‘‘Şanlıurfa İli İçme Suyunda Trihalometan Potansiyelinin Belirlenmesi’’, Harran Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Şanlıurfa, pp.56, 2006.
  • [13] Eroğlu, V., ‘‘Su Tasfiyesi’’, Çevre ve Orman Bakanlığı Yayını, Ankara, pp.407, 2008.
  • [14] Uyak, V., Toröz, İ., ‘‘İçme suyu kaynaklarındaki doğal organik maddelerin zenginleştirilmiş koagülasyon yöntemi ile giderilmesi’’, İstanbul Teknik Üniversitesi Dergisi, 16, 115-122, 2006.
  • [15] Gümüş, D., Akbal F., ‘‘Removal of Natural Organic Matter in Drinking Waters and Prevention of Trihalomethanes Formation’’, Journal of Engineering and Natural, 31, 529-553, 2013.