EFFECT OF ELECTROMAGNETIC FIELD ORIGINATING FROM HIGH VOLTAGE LINES ON MALONDIALDEHYDE LEVEL

EFFECT OF ELECTROMAGNETIC FIELD ORIGINATING FROM HIGH VOLTAGE LINES ON MALONDIALDEHYDE LEVEL

Aim: The aim of our study was to investigate the effect of electromagnetic fields originating from high voltage lines on serum malondialdehyde level of male rats wistar albino. Materials and Methods: A total of 32 rats were randomly assigned to study in 4 groups. Groups were; Group 1: high voltage, Group 2: high voltage + ganoderma l., Group 3: high voltage + melatonin, Group 4: control. Experimental groups were exposed to high voltage for 8 hours daily for 52 days. The electric field and the magnetic field were measured. Ganoderma was administered 20 mg/kg/day as a gavage and melatonin intraperitoneally as 10 mg/kg/day. Results: In the study, the malondialdehyde (MDA) levels of the experimental and control groups were compared. There was no significant difference between the groups. According to the control group, it was found that the MDA level of the high voltage group increased, while the Ganoderma and Melatonin groups had a small decrease at the MDA level. Conclusion: These results show that electromagnetic fields originating from high tension increase the MDA serum level, which is found to decrease in the presence of ganoderma and melatonin. 

___

  • 1. Seifirad S. Farzampour S. Nourbakhsh M. et al. Effects of extremely low frequency electromagnetic fields on paraoxonase serum activity and lipid peroxidation metabolites in rat. J Diabetes Metab Disord. 2014;13: 85-94.
  • 2. Kocaman A. Altun G. A.Kaplan A. et al. Genotoxic and carcinogenic effects of non-ionizing electromagnetic field. Environ Res. 2018;163:71–79.3. Yokuş B. Ülker Çakır D. Akdağ MZ. et al. Oxidative DNA damage in rats exposed to extremely low frequency electromagnetic fields. Free Radical Research. 2005; 39(3): 317–323
  • 4. Del Rio D. J Stewart A. Pellegrini N. A Review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis. 2005;15:316-328.
  • 5. Smina TP. De Strayo. Devasagayam TPA. et al. Ganoderma lucidum total triterpenes prevent radiation-induced DNA damage and apoptosis in splenic lymphocytes in vitro. Mutation Research 2011;726:188-194.
  • 6. Espino J. Pariente JA. Rodriguez AB. Oxidative stress and immunosenescence: therapeutic effects of melatonin. Oxid Med Cell Longev. 2012;2012: Article ID 670294, 9 Pages.
  • 7. Jentzsch, AM. Bachmann H. Fürtst P. K Biesalski H. Improved analysis of malondialdehyde in human body fluids. Free Rad Biol Med. 1996;20:251-256.
  • 8. Meral İ. Mert H. Mert N. et al. Effects of 900-MHz electromagnetic field emitted from cellular phone on brain oxidative stress and some vitamin levels of guinea pigs. Brain Res. 2007;1169:120-124.
  • 9. Hajhosseini L. Khaki A. Merat E. et al. Effect of rosmarinic acid on sertoi cells apoptosis and serum antioxidant levels in rats after exposure to electromagnetic fields. Afr J Tradit Complement Altern Med. 2013;10(6):477-480.
  • 10. Çoşkun Ş. Balabanlı B. Canseven A. et al. Effects of continuous and intermittent magnetic fields on oxidative parameters in vivo. Neurochem Res 2009;34:238–243.
  • 11. Türközer Z. Güler G. Seyhan N. Effects of exposure to 50 Hz electric field at different strengths on oxidative stress and antioxidant enzyme activities in the brain tissue of guinea pigs. Int J Radiat Biol. 2008;84(7):581-590.
  • 12. Çelik MS. Akpolat V. Işık B. et al. The effect of low-frequency electromagnetic field (ELF-EMF) on serum paraoxanase (PON1) and malondialdehyde (MDA) levels. Int Arc Med Res. 2014;6(1):1-4.
  • 13. Kula B. Sobczak A. Kuska R. Effect of electromagnetic field on free-radical processes in steelworkers. part I: magnetic field influence on the antioxidant activity in red blood cells and plasma. J Occup Health. 2002;44:226-229.
  • 14. Galano A. Tan D X. J Reiter R. Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res. 2011;51:1-16.
  • 15. Kaya H. Delibas N. Serteser M. et al. The effect of melatonin on lipid peroxidation during radiotherapy in female rats. Strahlenther Onkol.1999;175:285-8.
  • 16. Ibrahim SI. El-Kabany, H. Effect of Ganoderma lucidum (g. lucidum) on the liver of mice bearing ehrlich solid tumor (EST) and exposed to γ-radiation. J Rad Res Appl Sci.,2013;6(1):175-196.
  • 17. Wong KL. Chao HH. Chan P. et al. Antioxidant activity of Ganoderma lucidum in acute ethanol-induced heart toxicity. Phytother Res.2004;18:1024-1026.