Çörek Otu’nun (Nigella sativa) Biyolojik ve Farmakolojik Özellikleri

Ranunculaceae familyasının bir üyesi olan Nigella sativa, Güney Avrupa ve Batı Asya’da doğal olarak yetişen ve dünyanın birçok bölgesinde kültive edilen tek yıllık bir bitkidir. Dünya mutfaklarında baharat olarak kullanılmasının yanı sıra binlerce yıldır Unani, Ayurveda, Siddha ve Tıbb-ı Nebevî gibi Geleneksel Tıp Sistemleri’nde kullanılan ve kutsallık atfedilen bu şifâlı bitki günümüzde de gastrointestinal rahatsızlıklar, cilt hastalıkları, diyabet ve kanser hastalıklarında ve ayrıca kozmetik amaçlar ile saç dökülmesine karşı ve yaşlanma karşıtı cilt bakımında kullanılmaktadır. Yaygın kullanımına rağmen, tıbbî amaçlı kullanılan Çörek Otu (Nigella sativa) bitkisi sıklıkla belirgin bir özellik olarak dikenimsi çanak yaprakları olan ve süs bitkisi olarak kullanılan Şam Çörek Otu (Nigella damascena) bitkisi ile karıştırılmaktadır; ki bu karışıklık maalesef bilimsel literatürde de söz konusudur. Bu çalışma ile Nigella türlerinin doğru tanınması ve tanımlanması amacıyla bir farkındalık oluşturmak, Nigella sativa’nın içerdiği timokinon, p-simen, karvakrol, timol ve trans-anetol gibi biyoaktif fitokimyasalların farmakolojik etkilerini özetlemek ve ayrıca son yıllarda yapılan araştırmaların değerlendirilmesi hedeflenmiştir.

Biological and Pharmacological Properties of Black Cumin (Nigella sativa)

Nigella sativa, a member of the Ranunculaceae family, is an annual herb that grows naturally in Southern Europe and Western Asia and is cultivated in many parts of the world. In addition to being used as a spice in world cuisines, this medicinal plant, which has been used for thousands of years in Traditional Medicine Systems such as Unani, Ayurveda, Siddha and prophetic medicine aṭ-Tibb an-Nabawī and attributed to holiness, is still used in gastrointestinal disorders, skin diseases, diabetes and cancer diseases, and also for cosmetic purposes such as anti-hair loss and anti-aging skin care. Despite its widespread use, the Black Cumin (Nigella sativa) plant, which is used for medicinal purposes, is often confused with the Love-in-a-mist (Nigella damascena) plant, which has thorny sepals as a distinctive feature and is used as an ornamental plant; unfortunately, this confusion also exists in the scientific literature. With this study, it was aimed to raise awareness for the correct knowledge and identification of Nigella species, to summarize the pharmacological effects of bioactive phytochemicals such as thymoquinone, p-cymene, carvacrol, thymol and trans-anethole contained in Nigella sativa, and also to evaluate the studies conducted in recent years.

___

  • Kaynaklar 1. Vogtherr M. Köhler's Medizinal-Pflanzen: in naturgetreuen Abbildungen mit kurz erläuterndem Texte. Band III (Ergänzungsband). Gera-Untermhaus (Druck und Verlag von Fr. Eugen Köhler); 1898.
  • 2. Salih B, Sipahi T, Dönmez EO. Ancient Nigella seeds from Boyali Höyük in north-central Turkey. J Ethnopharmacol 2009;124(3): 416–420.
  • 3. Gün, M. Kutsal Tohum (Nigella sativa): Çörek Otunun İyileştirici Etkisine İlişkin Bazı Bilgiler. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi 2012;2(1):43–46.
  • 4. Padhye S, et al. From here to eternity - the secret of Pharaohs: Therapeutic potential of black cumin seeds and beyond. Cancer Ther 2008;6(b):495–510.
  • 5. Tariq M. Nigella sativa seeds: Folklore treatment in modern day medicine. Saudi J Gastroenterol 2008;14(3):105–106.
  • 6. Ahmad MF, et al. An updated knowledge of Black seed (Nigella sativa Linn): Review of phytochemical constituents and pharmacological properties. J. Herb. Med 2020;25(100404):1–11.
  • 7. Meddah B, et al. Nigella sativa inhibits intestinal glucose absorption and improves glucose tolerance in rats. J. Ethnopharmacol 2009;121(3):419-424.
  • 8. Abu-Darwish MS, Efferth T. Medicinal Plants from Near East for Cancer Therapy. Front. Pharmacol 2018;9(56):1–17.
  • 9. Sudhir SP, Deshmukh VO, Verma HN. Nigella sativa Seed, a Novel Beauty Care Ingredient: A Review. Int J Pharm Sci Res 2016;7(8):3185–3196.
  • 10. sozluk.gov.tr [Internet]. Ankara: Türk Dil Kurumu Başkanlığı [cited 2023 Apr 25]. Available from: https://sozluk.gov.tr/
  • 11. Rogozhin EA, et al. Novel antifungal defensins from Nigella sativa L. Seeds. PPB 2011;49(2):131–137. 12. Hajhashemi V, Ghannadi A, Jafarabadi H. Black cumin seed essential oil, as a potent analgesic and antiinflammatory drug. PTR 2004;18(3):195–199.
  • 13. Pop RM, et al. Nigella Sativa's Anti-Inflammatory and Antioxidative Effects in Experimental Inflammation. Antioxidants 2020;9(10):1–13.
  • 14. Houghton PJ, et al. Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta Med 1995;61(1):33–36.
  • 15. Tekeoglu I, et al. Effects of thymoquinone (volatile oil of black cumin) on rheumatoid arthritis in rat models. PTR 2007;21(9):895–897.
  • 16. Goel S, Mishra P. Thymoquinone inhibits biofilm formation and has selective antibacterial activity due to ROS generation. Appl Microbiol Biotechnol 2018;102(4):1955–1967.
  • 17. Mosolygó T, et al. Bioactive Compounds of Nigella sativa Essential Oil as Antibacterial Agents against Chlamydia Trachomatis D. Microorganisms 2019;7(9):1–8.
  • 18. Mahmoudvand H, et al. Evaluation of antifungal activities of the essential oil and various extracts of Nigella sativa and its main component, thymoquinone against pathogenic dermatophyte strains. J Mycol Med 2014;24(4):e155-e161.
  • 19. Almatroodi SA, et al. Thymoquinone, an Active Compound of Nigella sativa: Role in Prevention and Treatment of Cancer. Curr Pharm Biotechnol 2020;21(11):1028–1041.
  • 20. Gomathinayagam R, et al. Chemopreventive and Anticancer Effects of Thymoquinone: Cellular and Molecular Targets. J Cancer Prev 2020;25(3):136–151.
  • 21. Cobourne-Duval MK, et al. The Antioxidant Effects of Thymoquinone in Activated BV-2 Murine Microglial Cells. Neurochem Res 2016;41(12):3227–3238.
  • 22. Erol B, et al. Comparison of combined antioxidants and thymoquinone in the prevention of testis ischemia - reperfusion injury. Andrology 2017;5(1):119–124.
  • 23. Talebi M, et al. Biological and therapeutic activities of thymoquinone: Focus on the Nrf2 signaling pathway. PTR 2020;35(4):1739–1753.
  • 24. Marchese A, et al. Update on Monoterpenes as Antimicrobial Agents: A Particular Focus on p-Cymene. Materials 2017;10(8):1–15.
  • 25. Kamalabadi M, Astani A, Nemati F. Anti-viral Effect and Mechanism of Carvacrol on Herpes Simplex Virus Type 1. IJML 2018;5(2):113–122.
  • 26. Kulkarni SA, et al. Computational evaluation of major components from plant essential oils as potent inhibitors of SARS-CoV-2 spike protein. J Mol Struct 2020;1221(128823):1–11.
  • 27. Kumar A, et al. Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. J Biomol Struct Dyn 2020;39(10):3760–3770.
  • 28. Marchese A, et al. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem 2016;210:402–414.
  • 29. Arjumand S, et al. Thymoquinone attenuates rheumatoid arthritis by downregulating TLR2, TLR4, TNF-α, IL-1, and NFκB expression levels. Biomed. Pharmacother 2019;111:958–963.
  • 30. Faisal R, Chiragh S, Popalzai AJ. Anti inflammatory effect of thymoquinone in comparison with methotrexate on pristane induced arthritis in rats. JPMA 2015;65(5):519–525.
  • 31. Faisal R, et al. Anti-Arthritic Effect Of Thymoquinone In Comparison With Methotrexate On Pristane Induced Arthritis In Female Sprague Dawley Rats. JAMC 2018;30(1):3–7.
  • 32. Nazzaro F, et al. Essential Oils and Antifungal Activity. Pharmaceuticals 2017;10(4):1–20.
  • 33. Bashmail HA, et al. Thymoquinone synergizes gemcitabine anti-breast cancer activity via modulating its apoptotic and autophagic activities. Sci Rep 2018;8(11674):1–11.
  • 34. Odeh LH, Talib WH, Basheti IA. Synergistic effect of thymoquinone and melatonin against breast cancer implanted in mice. J Cancer Res Ther 2018;14(Suppl2):324-330.
  • 35. Woo CC, et al. Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: The role of p38 MAPK and ROS. PloS One 2013;8(10):e75356.
  • 36. Houssein M, et al. Thymoquinone synergizes with arsenic and interferon alpha to target human T-cell leukemia/lymphoma. Life Sci 2020;251(117639):1–10.
  • 37. Guo LP, et al. Effect of Thymoquinone on Acute Kidney Injury Induced by Sepsis in BALB/c Mice. Biomed Res Int 2020; 2020(1594726):1–7.
  • 38. Cui BW, et al. Thymoquinone Attenuates Acetaminophen Overdose-Induced Acute Liver Injury and Inflammation Via Regulation of JNK and AMPK Signaling Pathway. Am J Chin Med 2019;47(3):577–594.
  • 39. Saadia M, et al. Comparative hepatoprotective effect of Nigella sativa pre- and post-treatment to rabbits. Pak J Pharm Sci 2019;32(1):205–212.
  • 40. Cobourne-Duval MK, et al. Thymoquinone increases the expression of neuroprotective proteins while decreasing the expression of pro-inflammatory cytokines and the gene expression NFκB pathway signaling targets in LPS/IFNγ -activated BV-2 microglia cells. J Neuroimmunol 2018;320:87–97.
  • 41. Yarnell E, Abascal K. Nigella sativa: holy herb of the middle East. Altern Complement Ther 2011;17(2):99-105.
  • 42. Ahmad A, et al. A review on therapeutic potential of Nigel la sativa: A miracle herb. Asian Pac J Trop Biomed 2013;3(5):337-352.
  • 43. pubmed.ncbi.nlm.nih.gov [Internet]. Bethesda, MD: National Library of Medicine [cited 2023 Jun 06). Available from: https://pubmed.ncbi.nlm.nih.gov/?term=Nigella%20sativa&timeline=expanded
Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi-Cover
  • ISSN: 1309-761X
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2010
  • Yayıncı: OYA ÖGENLER