Radyoiodin (131I) Uygulanan Ratlarda Karaciğerdeki Histopatolojik Bulgular ve Hepatik Satellate Hücrelerde Artış

Radyoaktif iyot (131I) hipertiroidizm ve tiroid kanserlerinin tanı ve tedavisi amacıyla kullanılan bir radyonükliddir. Bu çalışma ile ratlarda radyoiodinden (131I) kaynaklanan karaciğer hasarının histopatolojik ve immunohistokimyasal olarak değerlendirilmesi amaçlandı. Çalışmada 20 adet dişi Wistar Albino rat kullanıldı ve bunlar rastgele hiçbir işleme tabi tutulmayan kontrol grubu (n=10) ve 131I uygulama grubu (n=10)  şeklinde ikiye ayrıldı. Üçüncü ayın sonunda nekropsileri yapılan ratların karaciğer dokuları rutin doku takibine alındı. Karaciğerin histopatolojik incelemesinde 131I grubunda kapsula altında granulom oluşumlarına rastlandı. İmmunohistokimyasal boyamada 131I grubunda hepatik satellate hücrelerin (HPCs), yoğunluğunu gösteren GFAP boyamalarının kontrol grubundan daha yüksek bir değere sahip olduğu görüldü.

Hystopathological Findings and Hepatic Satellite Cells İncrease in the Liver of the Rats Applied Radionin (131I)

Radioactive iodine (131I) is a radionuclide used for the diagnosis and treatment of thyroid cancers and hyperthyroidism. This study was aimed to evaluation by histopathological and immunohistochemical of hepatic damage caused by radioiodine (131I) in the rat. Twenty female Wistar Albino rats were used in the study and they were randomly divided into two groups as control group (n = 10) and 131I application group (n = 10). At the end of the third month, the liver tissues were taken of rats at the necropsy, the tissue specimens underwent routine tissue processing. Histopathological examination was observed granuloma formation in the liver in 131I group. Immunohistochemical staining the GFAP was showed in the 131I group the higher than in the control group, that showed density of the hepatic satellite cells (HPCs). 

___

  • KAYNAKLAR: 1. Hibbert A, Gruffydd-Jones T, Barrett EL, Day MJ, Harvey AM. Feline thyroid carcinoma: diagnosis and response to high-dose radioactive iodine treatment. J Feline Med Surg. 2009; 11: 116-124.
  • 2. Alexander C, Bader JB, Schaefer A, Finke C, Kirsch CM. Intermediate and long-term side effects of high-dose radioiodine therapy for thyroid carcinoma. J Nucl Med. 1998; 39: 1551-1554.
  • 3. Liptak JM. Canine Thyroid Carcinoma. Clin Tech Small Anim Pract, 2007; 22: 75-81.
  • 4. Peremans K, Vandermeulen E, Van Hoek I, Daminet S, Vermeire S, Bacher K. Interference of iohexol with radioiodine thyroid uptake in the hyperthyroid cat. J Feline Med Surg. 2008; 10: 460-465.
  • 5. Silberstein EB, Alavi A, Balon HR, Clarke SE, Divgi C, Gelfand MJ, Goldsmith SJ, Jadvar H, Marcus CS, Martin WH, Parker JA, Royal HD, Sarkar SD, Stabin M, Waxman AD. The SNMMI practice guideline for therapy of thyroid disease with 131I 3.0. J Nucl Med. 2012; 53(10): 1633-1651.
  • 6. Peterson, ME. Radioiodine treatment of hyperthyroidism. Clin Tech Small Anim Pract. 2006; 21 (1): 34-39.
  • 7. Lin WY, Shen YY, Wang SJ. Short-term hazards of low-dose radioiodine ablation therapy in postsurgical thyroid cancer patients. Clin Nucl Med. 1996; 21: 780–782.
  • 8. Markitziu A, Lustmann J, Uziel B, Krausz Y, Chisin R. Salivary and lacrimal gland ınvolvement in a patient who had undergone a thyroidectomy and was treated with radioiodine for thyroid cancer. Oral Surg Oral Med Oral Pathol. 1993; 75(3): 18–22.
  • 9. Solans R, Bosch JA, Galofré P, Porta F, Roselló J, Selva-O'callagan A, Vilardell M. Salivary and lacrimal gland dysfunction (sicca syndrome) after radioiodine therapy. J Nucl Med. 2001; 42: 738–43.
  • 10. Zettinig G, Hanselmayer G, Fueger BJ, Hofmann A, Pirich C, Nepp J, Dudczak R. Long-term impairment of the lacrimal glands after radioiodine therapy: A crosssectional study. Eur J Nucl Med Mol Imaging. 2002; 29: 1428–1432.
  • 11. Bouwens L. Proliferation and phenotypic expression of non-parenchymal liver cells. Scand J Gastroenterol. 1988; 151: 46–51.
  • 12. Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells af the liver. PHYSİOL Rev. 2008; 88: 125-172.
  • 13. Friedman SL, Roll FJ, Boyles J, Bissell DM. Hepatic lipocytes: the principal collagen-producing cells of normal rat liver. Proc Natl Acad Sci U S A. 1985; 82(24): 8681–8685.
  • 14. Morini S, Carotti S, Carpino G, Franchitto A, Corradini SG, Merli M, et al. GFAP expres-sion in the liver as an early marker of stellate cells activation. Ital J Anat Embryol. 2005; 110: 193–207.
  • 15. Rostagi A, Bihari C, Maiwall R, Ahuja A, Sharma M.K, Kumar A, Sarin S.K. Hepatic stellate cells are involved in the pathogenesis of acute-on chronic liver failure (ACLF). Virchows Arch. 2012; 461: 393-398.
  • 16. Savaş MC. Hepatik Fibrozisin Patogenezi. Turkiye Klinikleri J Int Med Sci. 2005; 1(16): 5-10.
  • 17. Ichikawa S, Mucida D, Tyznik A.J, kronenberg M, Cheroutre H. Hepatic stellate cells function as regulatory bystanders. J Immunol. 2011; 186(10): 5549-5555.
  • 18. Sappino AP, Schurch W, Gabbiani G:Biology of disease. Differentiation repertoire of fibroblastic cells: expression of cytoskeletal protein as marker of phenotypic modulations. Lab Invest. 1990; 63: 144–161.
  • 19. Tsutsumi M, Takada A, Takase S: Characterization of desmin-positive rat liver sinusoidal cells. Hepatology. 1987; 7(2): 277–284.
  • 20. Buniation G, Gebhardt R, Schrenk D, Hamprecht B. Colocalization of three types of intermediate filament proteins in perisinusoidal stellate cells: glial fibrillary acidic protein aqs a new cellular marker. Eur J Cell Biol. 1996; 70: 23-32.
  • 21. Hautekeete ML, Niki T, Van den Berg K, Delvaux G, Geerts A. A fraction of stellate cells in human liver express glial fibrillary acidic protein (GFAP). J Hepatol. 1996; 25: 112.
  • 22. Gultekin FA, Bakkal BH, Guven B, Tasdoven I, Bektas S, Can M, Comert M. Effects of ozone oxidative preconditioning on radiation-induced organ damage in rats. J Radiat Res. 2013; 54: 36-44.
  • 23. Albert MD, Bucher NL. Latent injury and repair in rat liver induced to regenerate at intervals after xradiation. Cancer Res. 1960; 20: 1514-1522.
  • 24. Koc M, Taysi S, Buyukokuroglu ME, Bakan N. Melatonin protects rat liver against irradiation-induced oxidative injury. J Radiat Res. 2003; 44: 211-215.
  • 25. Arora R, Gupta D, Chawla R, Sagar R, Sharma A, Kumar R, Prasad J, Singh S, Samanta N, Sharma RK. Radioprotection by plant products: present status and future prospects. Phytother Res. 2005; 19: 1-22.
  • 26. Atilgan HI, Yumusak N, Sadic M, Gultekin SS, Koca G, Ozyurt S, Demirel K, Korkmaz M. Radioprotective effect of montelukast sodium against hepatic radioiodine (131I) toxicity: A histopathological investigation in the rat model. Ankara Üniv Vet Fak Derg. 2015; 62: 37-43.
  • 27. Drebber U. Kasper HU, Ratering J. Wedemeyer I. Schirmacher P. Dienes HP. Odenthal M. Hepatic granulomas: histological and molecular pathological approach to diferential diagnosis a study of 442 cases. Liver International. 2008; 828-834.
  • 28. Guyot C, Lepreux S, Combe C, Doudnikoff E, Bioulac-Sage P, Balabaud C, et al. Hepaticfibrosis and cirrhosis: the (myo)fibroblastic cell subpopulations involved. Int J Biochem Cell Biol. 2006; 38: 135–51.
  • 29. Tennakoon AH. Izawa T. Wijesundera KK. Murakami H. Ichikawa CK. Tanaka M. Golbar HM. Kuwamura M. Yamate J. Immunohistochemical characterization of glial fibrillary acidicprotein (GFAP)-expressing cells in a rat liver cirrhosis model inducedby repeated injections of thioacetamide (TAA). Exp Toxicol Pathol. 2014; 67: 53–63.
  • 30. Atmaca HT, Gazyagci AN, Canpolat S, Kul O. Hepatik stellate cells increase in Toxoplasma gondii infection in mice. Parasit Vectors. 2013; 6: 135.