Kayseri Kenti için Olasılıksal Sismik Tehlikenin Değerlendirilmesi

Bu araştırmada Kayseri kentinin güncel bir sismik tehlike analizi gerçekleştirilmiştir. Bu doğrultuda, 1900'den 2022'e kadar olan sığ kabuk depremlerini içeren ve moment büyüklük ölçeğine dayalı bir deprem kataloğu oluşturulmuştur. Sismik kaynaklar, aktif fay zonları dikkate alınarak homojen alansal kaynak zonları olarak tanımlanmıştır. Her bir sismik kaynak için deprem tehlike parametreleri olarak Gutenberg-Richter parametreleri, Kijko-Smit maksimum olabi-lirlik tahmini yöntemi ile belirlenmiştir. Kayseri kenti için uygun yer hareketi tahmin denklemlerini bulmak için 17 aday denklem, ortalama log-olabilirlik değerleri kullanılarak değerlendirilmiştir. Her bir sismik kaynağın maksimum deprem büyüklüğü, bölgesel kırılma karakteristiğine ve Kijko-Sellevoll yöntemlerine göre hesaplanmıştır. Kayseri kenti için Coğrafi Bilgi Sistemi kullanılarak anakaya seviyesinde Deprem Düzeyi 1 ve Deprem Düzeyi 2 için pik yer ivmesi, 0.2 s ve 1 s periyotlu spektral ivme değerleri hesaplanarak sismik tehlike haritaları geliştirilmiştir. Ayrıca bu araştırma kapsamında, Kayseri kent merkezi için sismik tehlike eğrileri ve üniform tehlike spektrumları oluşturulmuştur.

Probabilistic Seismic Hazard Assessment for Kayseri City

In this research, a current seismic hazard analysis for the city of Kayseri was carried out. Accordingly, an earthquake catalog based on the moment magnitude scale was created, which includes shallow crustal earthquakes from 1900 to 2022. Seismic sources are defined as homogeneous areal source zones, taking into account active fault zones. Gutenberg-Richter parameters as earthquake hazard parameters for each seismic source were evaluated using the Kijko-Smit maximum likelihood estimation method. To find the appropriate ground motion prediction equations for the city of Kayseri, 17 candidate equations were evaluated using mean log-likelihood values. The maximum earthquake magnitude of each seismic source was calculated according to regional rupture characteristics and Kijko-Sellevoll methods. Seismic hazard maps for Kayseri city were developed for peak ground acceleration, spectral acceleration with periods of 0.2 and 1 sec and for bedrock with hazard levels of 2% and 10% probability of exceedance in 50 years by using Geographical Information System software. In addition, within the scope of this research, seismic hazard curves and uniform hazard spectrum were created for the city center of Kayseri.

___

  • Abrahamson, N.A., Silva, W.J., Kamai R (2014). Summary of the ASK14 ground motion relation for active crustal regions. Earthquake Spectra, 30:1025–1055.
  • Abramowitz, M., Stegun, I.A. (1970). Handbook of mathematical functions, 9th edn. Dover Publication, New York.
  • Aki, K. (1965). Maximum likelihood estimate of b in the Gutenberg-Richter formula and its confidence limits. Bulletin of the Earthquake Research Institute, 43:237–239.
  • Akkar, S., Bommer, J.J. (2010). Empirical equations for the prediction of PGA, PGV, and spectral accelerations in Europe, the Mediterranean Region, and the Middle East. Seismological Research Letters, 81:195–206.
  • Akkar, S., Bommer, J.J. (2007). Empirical prediction equations for peak ground velocity derived from strong-motion records from Europe and the Middle East. Bulletin of the Seismological Society of America, 97:511–530.
  • Akkar, S., Çağnan, Z., Yenier, E., Erdoğan, Ö., Sandıkkaya, M.A., Gülkan, P. (2010). The recently compiled Turkish strong motion database: preliminary investigation for seismological parameters. Journal of Seismology, 14:457–479.
  • Alpyürür, M., Lav, M. A. (2022). An assessment of probabilistic seismic hazard for the cities in Southwest Turkey using historical and instrumental earthquake catalogs. Natural Hazards, 1-31.
  • Anbazhagan, P., Bajaj, K., Moustafa, S.S.R., Al-Arifi, N.S.N. (2015). Maximum magnitude estimation considering the regional rupture character. Journal of Seismology 19:695–719.
  • Bazzurro, P., Cornell A.C. (1999). Disaggregation of seismic hazard. Bulletin of the Seismological Society of America, 89:501–520.
  • Bindi, D., Cotton, F., Kotha S.R., Bosse, C., Stromeyer, D., Grünthal, G. (2017). Application-driven ground motion prediction equation for seismic hazard assessments in non-cratonic moderate-seismicity areas. Journal of Seismology, 21:1201–1218.
  • Bindi, D., Pacor, F., Luzi, L., Puglia, R., Massa, M., Ameri, G., Paolucci, R. (2011). Ground motion prediction equations derived from the Italian strong motion database. Bulletin of Earthquake Engineering, 9:1899–1920.
  • Bommer, J. J., Abrahamson, N. A. (2006). Why do modern probabilistic seismic-hazard analyses often lead to increased hazard estimates? Bulletin of the Seismological Society of America, 96 (6), 1967–1977.
  • Boore, D.M., Atkinson, G.M. (2008). Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthquake Spectra, 24:99–138.
  • Boore, D.M., Stewart, J.P., Seyhan, E., Atkinson, G.M. (2014). NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthquake Spectra, 30:1057–1085.
  • Bozkurt, E. (2001). Neotectonics of Turkey–a synthesis. Geodinamica açta, 14:3–30.
  • Campbell, K.W., Bozorgnia, Y., (2008). NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthquake Spectra, 24:139–171.
  • Campbell, K.W., Bozorgnia, Y. (2014). NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra. Earthquake Spectra, 30:1087–1115.
  • Cauzzi, C., Faccioli, E. (2008). Broadband (0.05 to 20 s) prediction of displacement response spectra based on worldwide digital records. Journal of Seismology, 12:453–475.
  • Cauzzi, C., Faccioli, E., Vanini, M., Bianchini, A. (2015). Updated predictive equations for broadband (0.01–10 s) horizontal response spectra and peak ground motions, based on a global dataset of digital acceleration records. Bulletin of Earthquake Engineering, 13:1587–1612.
  • Chiou, B.S.J.J., Youngs, R.R. (2008). An NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 24:173–215.
  • Chiou, B.S.J., Youngs, R.R. (2014). Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 30:1117–1153.
  • Cornell, C.A. (1968). Engineering seismic risk analysis. Bulletin of the seismological society of America, 58:1583–1606.
  • Cornell, C.A., Vanmarcke, E.H. (1969). The major influences on seismic risk. Fourth World Conference On Earthquake Engineering, Book of Proceedings, 69–83.
  • Delavaud, E., Scherbaum, F., Kuehn, N., Allen, T. (2012). Testing the global applicability of ground-motion prediction equations for active shallow crustal regions. Bulletin of the Seismological Society of America, 102:707–721.
  • Delavaud, E., Scherbaum, F., Kuehn, N., Riggelsen, C. (2009). Information-theoretic selection of ground-motion prediction equations for seismic hazard analysis: An applicability study using californian data. Bulletin of the Seismological Society of America, 99:3248–3263.
  • Deniz, A. (2006). Estimation of Earthquake Insurance Premium Rates Based On Stochastic Methods, Thesis (Master), Department of Civil Engineering, Middle East Technical University (METU). Ankara.
  • Derras, B., Bard, P.Y. Cotton, F. (2016). Site-condition proxies, ground motion variability, and data-driven GMPEs: Insights from the NGA-West2 and RESORCE data sets. Earthquake Spectra, 32:2027–2056.
  • Emre, O., Duman, T.Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H., Çan, T. (2018). Active fault database of Turkey. Bulletin of Earthquake Engineering, 16:3229–3275.
  • Gezgin, C., Ekercin, S., Tiryakioğlu, İ., Aktuğ, B., Erdoğan, H., Gürbüz, E., Orhan, O., Bilgilioğlu, S.S., Torun, Ah. T., Gündüz, H.İ., Oktar, O., Türkmen, C., Kaya, E. (2022). Determination of recent tectonic deformations along the Tuz Gölü Fault Zone in Central Anatolia (Turkey) with GNSS observations. Turkish Journal of Earth Sciences, 31(1): 20-33.
  • Gupta, I.D. (2002). The state of the art in seismic hazard analysis. ISET Journal of Earthquake Technology 39:311–346.
  • Gutenberg, B., Richter, C.F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34:185–188.
  • Idriss, I.M. (2014). An NGA-West2 Empirical Model for Estimating the Horizontal Spectral Values Generated by Shallow Crustal Earthquakes. Earthquake Spectra, 30:1155–1177.
  • Idriss, I.M. (2008). An NGA empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes. Earthquake Spectra, 24:217–242.
  • Kadirioğlu, F.T., Kartal, R.F., Kılıç, T., Kalafat, D., Duman, T.Y., Azak, T.E., Özalp, S., Emre, Ö. (2018). An improved earthquake catalogue (M ≥ 4.0) for Turkey and its near vicinity (1900–2012). Bulletin of Earthquake Engineering, 16:3317–3338.
  • Kijko, A. (2004). Estimation of the maximum earthquake magnitude, mmax. Pure and Applied Geophysics, 161:1655–1681.
  • Kijko, A. (2016). Ha3 Matlab code, released 3.01. Seismic hazard assessment for selected area, University of Pretoria, South Africa.
  • Kijko, A., Sellevoll, M.A. (1989). Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes. Bulletin of the Seismological Society of America, 79:645–654.
  • Kijko, A., Singh, M. (2011). Statistical tools for maximum possible earthquake magnitude estimation. Acta Geophysica, 59:674–700.
  • Kijko, A., Smit, A. (2012). Extension of the Aki-Utsu b-Value estimator for incomplete catalogs. Bulletin of the Seismological Society of America, 102:1283–1287.
  • Koçyiğit, A., Erol, O. (2001). A tectonic escape structure: Erciyes pull-apart basin, Kayseri, central Anatolia, Turkey. Geodinamica Acta, 14(1-3), 133-145.
  • McKenzie, D. (1972). Active tectonics of the Mediterranean Region. Geophysical Journal of the Royal Astronomical Society, 30: 109–185.
  • Mueller, C.S. (2010). The influence of maximum magnitude on seismic-hazard estimates in the Central and Eastern United States. Bulletin of the Seismological Society of America, 100:699–711.
  • Ordaz, M., Martinelli, F., Aguilar, A., Arboleda, J., Meletti, C., D’Amico, V. (2017). R-CRISIS. Program and platform for computing seismic hazard.
  • Över, S., Yilmaz, H., Pinar, A., Özden, S., Ünlügenç, U.C., Kamacı, Z. (2013). Plio-Quaternary stress state in the Burdur Basin, SW-Turkey. Tectonophysics, 588:56–68.
  • Richter, C.F. (1935). An instrumental earthquake magnitude scale. Bulletin of the seismological society of America, 25:1–32.
  • Scherbaum, F., Delavaud, E., Riggelsen, C. (2009). Model selection in seismic hazard analysis: An information-theoretic perspective. Bulletin of the Seismological Society of America, 99:3234–3247.
  • Stewart, J.P., Douglas, J., Javanbarg, M., Abrahamson, N.A., Bozorgnia, Y., Boore, D.M., Campbell, K., Delavaud, E., Erdik, M., Stafford, P. (2015). Selection of ground motion prediction equations for the global earthquake model. Earthquake Spectra, 31:19–45.
  • Şengör, A.M.C., Görür, N., Şaroğlu, F. (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. The Society of Economic Paleontologists and Mineralogists, Special Publication, 37: 227-264.
  • TBDY (2018). Türkiye Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik. Afet ve Acil Durum Yönetim Başkanlığı, Ankara.
  • Tinti, S., Mulargia, F. (1985). Completeness analysis of a seismic catalog. Annales geophysicae, 407–414.
  • Utsu, T. (1965). A method for determining the value of "b" in a formula log n= a-bM showing the magnitude-frequency relation for earthquakes. Geophys Bull Hokkaido Univ, 13:99–103.
  • Wason, H.R., Das, R., Sharma, M.L. (2012). Magnitude conversion problem using general orthogonal regression. Geophysical Journal International, 190:1091–1096.
  • Wells, D.L., Coppersmith, K.J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84:974–1002.
  • Yenier, E., Atkinson, G.M. (2015). Regionally adjustable generic ground‐motion prediction equation based on equivalent point‐source simulations: Application to central and eastern North America, Bulletin of the Seismological Society of America, 105:1989–2009.
  • URL-1 (2022). https://kayseri.gov.tr (Erişim Tarihi: 22.09.2022).
  • URL-2 (2022). https://deprem.gov.tr (Erişim Tarihi: 21.08.2022).
  • URL-3 (2020). https://tadas.afad.gov.tr (Erişim Tarihi: 23.08.2022).