Farklı düzeylerdeki sulama uygulamalarının kinoa bitkisi üzerine etkileri II: Vejetatif gelişim, verim ve kalite parametreleri

Bu çalışmada, farklı düzeylerdeki sulama uygulamalarının Akdeniz iklim koşullarında yetiştirilen kinoa bitkisinin vejetatif gelişim, verim ve kalite parametreleri üzerine etkilerinin belirlenmesi amaçlanmıştır. Araştırma drenaj tipi lizimetre sisteminde, kumlu tın bünyeli toprakta, 2017 yılında, Titicaca (Q-52) kinoa (Chenopodium quinoa Willd.) çeşidi ile yürütülmüştür. Araştırmada tam sulama (TS), sırasıyla %75, 50 ve 25 oranında kısıntılı sulama (KS75, KS50, KS25) ve susuz (SZ) konuları tesadüf blokları deneme deseninde üç tekerrürlü olarak ele alınmıştır. TS konusuna 7 günde bir toprak su içeriğini tarla kapasitesine getirecek kadar, kısıntılı sulama konularına ise belirtilen kısıntı oranları dikkate alınarak sulama suyu uygulanmıştır. Deneme sonunda sulama konularında dane verimi, bitki boyu, stoma iletkenliği değerleri sırasıyla 243.0 (SZ)- 295.0 (TS) kg da-1 ; bi 93.5 (SZ)-103.2 (TS) cm; 252.4 (SZ)-319.8 (TS) mmol m-2 s-1, klorofil indeks içeriği mevsim içinde 2.8-57.0 arasında değişmiştir. Dane verimi, bitki boyu, stoma iletkenliği değerleri sulama konularında, yaprak klorofil içeriği değerleri ise mevsim içinde istatistiksel açıdan önemli farklılıklar (p<0.01) göstermiştir. Ancak, kinoa tohumlarında bin dane ağırlığı, kül, kuru madde, protein ve yağ içeriği açısından farklı sulama düzeylerinde istatistiksel olarak fark olmadığı, yağ asitleri açısındansa sadece eikosenoik asit içeriğinin sulama düzeylerine bağlı olarak istatistiksel anlamda farklılık (p<0.05) gösterdiği, uygulanan sulama suyu miktarı azaldıkça kinoa tohumlarında bulunan eikosenoik asit içeriğinin arttığı ve en yüksek eikosenoik asit içeriğinin SZ konusunda olduğu belirlenmiştir.

The effects of different levels of irrigation practices on quinoa II: Vegetative growth, yield and quality parameters

In this study, the effects of deficit irrigation applications on the vegetative growth and yield quality parameters of the quinoa grown in Mediterranean conditions were determined. The research was conducted in drainage-type lysimeters, filled with sandy loam soil, in 2017 with Titicaca (Q-52) quinoa (Chenopodium quinoa Willd.). In the research, full irrigation (TS), 75%, 50 and 25% of deficit irrigation (KS75, KS50, KS25) and rainfed (SZ) treatments were tested in randomized blocks design with three replications. Irrigation water was applied to the TS treatment 7-day intervals to bring the soil water content to the field capacity, and the deficit irrigation treatments were irrigated taking into account the specified cut-off rates. At the end of the trial, grain yield, plant height, stomatal conductance varied between 243.0 (SZ) - 295.0 (TS) kg da-1; 93.5 (SZ) - 103.2 (TS) cm; 252.4 (SZ) -319.8 (TS) mmol m-2 s- 1, respectively, and leaf chlorophyll index value varied between 2.8-57.0 during the season. Grain yield, plant height, stomatal conductivity values in irrigation treatments and leaf chlorophyll content values during the season, showed statistically significant differences (p<0.01). However, there was no statistical difference in irrigation levels in terms of 1000-seed weight, ash, dry matter, protein and oil content. In terms of fatty acids, only the eicosenic acid content differed statistically (p<0.05) depending on the irrigation levels, and as the amount of applied irrigation water decreased, the eicosanoic in the quinoa seeds increased. The highest eicosenic acid content was determined in SZ treatment.

___

  • Algosaibi AM, Badran AE, Almadini AM, El-Garawany MM (2017) The effect of irrigation intervals on the growth and yield of quinoa crop and its components. Journal of Agricultural Science 9(9): 182-191.
  • Amjad M, Akhtar SS, Yang A, Akhtar J, Jacobsen SE (2015) Antioxidative response of quinoa exposed to ıso-osmotic, ionic and non-ıonic salt stress. Journal of Agronomy and Crop Science 201: 452-560.
  • AOAC (2005) Official methods of analysis of AOAC international (Ed. William Horwitz), Association Official Analytical Chemists. Washington DC, USA.
  • Ayers AS, Westcot DW (1985) Water quality for agriculture. FAO Irrigation and Drainage. Paper 20, Rome.
  • Berry JA, Beerling DJ, Franks, PJ (2010). Stomata: Key Players in the Earth System, Past and Present. Current Opinion in Plant Biology (13): 233-240.
  • Bertero HD, La Vega AJ De, Correa G, Jacobsen SE, Mujica A (2004) Genotype and genotype-by-environment interaction effects for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multi-environment trials. Field Crops Research 89: 299-318.
  • Bhargava A, Shukla S, Ohri D (2006) Chenopodium quinoa-An Indian Perspective. Industrial Crops and Products 23: 73-87.
  • Buckland KR, Creech JE, Cardon GE, Monaco TA, Reeve JR (2019) Quinoa response to line-source sprinkler irrigation. Journal of Crop Improvement 5(33): 649-668.
  • Cherry JH, Bishop L, Hasegawa PM (1985) Differences in fatty acid composition of soybean seed produced in northern and southern areas of the USA. Phytochemistry 24(2): 237-241.
  • Flynn RO (1990) Growth characteristics of quinoa and yield response to increase soil water deficit. Ms Thesis, The University of Colorado State, Fort Collins, U.S.A.
  • Gamez AL, Soba D, Zamarreño ÁM, García-Mina JM, Aranjuelo I, Morales F (2019) Effect of water stress during grain filling on yield, quality and physiological traits of illpa and rainbow quinoa (Chenopodium quinoa willd.) cultivars. Plants 8(6): 173.
  • Geerts S, Raes D, Garcia M, Vacher J, Mamani R, Mendoza J, Huanca R, Morales B, Miranda R, Cusicanqui J, Taboada C (2008) Introducing deficit irrigation to stabilize yields of quinoa (Chenopodium quinoa Willd.). European Journal of Agronomy 28: 427-436.
  • Geren H, Kavut YT, Topçu GD, Ekren S, İştipliler D (2014) Akdeniz iklimi koşullarında yetiştirilen kinoa (chenopodium quinoa willd.)’da farklı ekim zamanlarının tane verimi ve bazı verim unsurlarına etkileri. Ege Üniversitesi Ziraat Fakültesi Dergisi 51(3): 297-305.
  • Hirich A, Choukr-Allah R, Jacobsen SE (2014) The combined effect of deficit irrigation by treated wastewater and organic amendment on quinoa (Chenopodium quinoa Willd.) productivity. Desalination and Water Treatment 52(10): 2208-2213.
  • Horie T, Matsuura S, Takai T, Kuwasaki K, Ohsumi A, Shiraiwa T (2006) Genotypic Difference in Canopy Diffusive Conductance Measured by a New Remote-Sensing Method and Its Association with the Difference in Rice Yield Potential. Plant, Cell and Environment (29): 653-660.
  • Jacobsen SE, Stolen O (1993) Quinoa-morphology and phenology and prospects for its production as a new crop in Europe. Eurapean Journal Agronomy 2: 19-29.
  • Jacobsen SE (2003) The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Reviews International, 19: 167-177.
  • Jacobsen SE, Liu F, Jensen CR (2009) Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Scientia Horticulturae 122: 281-287.
  • Kaçar B, İnal A (2008) Bitki analizleri. Nobel Yayın No: 1241.
  • Kaya Ç (2010) Akdeniz bölgesinde damla sistemiyle tatlı ve tuzlu su kullanılarak uygulanan farklı sulama stratejilerinin quinoa bitkisinin verimiyle toprakta tuz birikimine etkileri ve saltmed modelinin test edilmesi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü Tarımsal Yapılar ve Sulama Anabilim Dalı Yüksek Lisans Tezi, Adana.
  • Kır AE, Temel S (2017) Sulu koşullarda farklı kinoa (chenopodium quinoa willd.) genotiplerinin tohum verimi ile bazı tarımsal özelliklerinin belirlenmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7(1): 353-361.
  • Koziol MJ (1992) Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). Journal Food Composition and Analysis 5: 35-68.
  • Kramer PJ (1983) Water relations of plants. Academic Press, New York, pp. 120-145.
  • Lavini A, Pulvento C, D’andria R, Riccardi M, Choukr-Allah R, Belhabib O, Yaza, A, Ince Kaya Ç, Sezen SM, Qadir M, Jacobsen SE (2014) Quinoa’s potential in the Mediterranean Region. Journal of Agronomy and Crop Science 200(5): 344-360.
  • Marmouzi I, Madani N El, Charrouf Z, Cherrah Y, Abbes Faouzi MY El (2015) Proximate analysis, fatty acids and mineral composition of processed Moroccan Chenopodium quinoa Willd. and antioxidant properties according to the polarity. Phytotherapie 13: 110-117.
  • MGM (2020) T.C Tarım ve Orman Bakanlığı, Meteoroloji Genel Müdürlüğü Antalya iline ait genel istatistik verileri https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=ANTALYA. Erişim 02 Mayıs 2020.
  • Nageswara Rao RC, Talwar HS, Wright GC (2001). Rapid assessment of specific leaf area and leaf nitrogen in peanut (Arachis hypogaea L.) using chlorophyll meter. Journal of Agronomy and Crop Science 186: 175-182.
  • OKİB (1983) Gıda maddeleri muayene ve analiz yöntemleri. T.C. Orman ve Köy İşleri Bakanlığı, Gıda İşleri Genel Müdürlüğü, Genel Yayın No: 65, Ankara.
  • Park HS, Morita N (2004) Changes of bound lipids and composition of fatty acids in germination of quinoa seeds. Food Science and Technology Research 10(3): 303-306.
  • Peiretti PG, Gai F, Tassone S (2013) Fatty acid profile and nutritive value of quinoa (Chenopodium quinoa Willd.) seeds and plants at different growth stages. Animal Feed Science and Technology 183: 56-61.
  • Pietragalla J, Pask A (2011) Stomatal conductance. In: Pask A, Pietragalla J, Mullan D, Reynolds M. (eds), Wheat physiological breeding II: A field guide to wheat phenotyping. CIMMYT, pp. 15-17.
  • Präger A, Munz S, Nkebiwe PM, Mast B, Graeff-Hönninger S (2018) Yield and quality characteristics of different quinoa (Chenopodium quinoa willd.) cultivars grown under field conditions in southwestern Germany. Agronomy 8(10): 197.
  • Rensburg LV, Kruger GHJ (1994) Evaluation of components of oxidative stress metabolism for use in selection of drought tolerant cultivars of Nicotiana tabacum L. Journal of Plant Physiology 143: 730-737.
  • Repo-Carrasco R, Espinoza C, Jacobsen SE (2003) Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Reviews International 19(1-2): 179-189.
  • RG (2014) Türk gıda kodeksi zeytinyağı ve prina yağı tebliği, Tebliğ No. 2014/53, Resmi Gazete, sayı: 29181.
  • Ruales J, Nair BM (1993) Content of fat, vitamins and minerals in quinoa (Chenopodium quinoa, Willd) seeds. Food Chemistry 48(2): 131-136.
  • Steduto P, Hsiao CT, Ferers E, Raes D (2012) Crop yield response to water. FAO İrrigation and Drainage, Paper 66, Rome.
  • Talebnejad R, Sepaskhah AR (2015) Effect of different saline ground water depths and irrigation water salinities on yield and water use of quinoa in lysimeter. Agricultural Water Management 148: 177-188.
  • Tan AŞ (2011) Bazı susam çeşitlerinin menemen koşullarında performansları. Anadolu Journal of Agean Agricultural Research Institute 21(2): 11-28.
  • Tan M, Yöndem Z (2013) İnsan ve hayvan beslenmesinde yeni bir bitki: kinoa (Chenopodium quinoa Willd.). Alınteri 25(B): 62-66.
  • Valencia-Chamorro SA (2016) Quinoa: Overview. In: Wrigley C, Corke H, Seetharaman K, Faubion J (eds), Encyclopedia of Food Grains (Second Edition). Academic Press, Oxford, pp. 341-348.
  • Wang N, Wang F, Shock CC, Meng C, Qiao L (2020) Effects of management practices on quinoa growth, seed yield, and quality. Agronomy 10(445): 1-15.
  • Yazar A, Kaya Çİ (2014) A new crop for salt affected and dry agricultural areas of Turkey: quinoa (Chenopodium quinoa Willd.). Turkish Journal of Agricultural and Natural Sciences, Special Issue, 2: 1440-1446.
  • Yazar A, Incekaya Ç, Sezen SM, Jacobsen SE (2015) Saline water irrigation of quinoa (Chenopodium quinoa) under Mediterranean conditions. Crop and Pasture Science 66: 993-1002.
  • Yordanov I, Velikova V, Tsonev T (2000) Plant responses to drought, acclimation and stress tolerance. Photosynthetica 38: 171-186.
Mediterranean Agricultural Sciences-Cover
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1988
  • Yayıncı: Akdeniz Üniversitesi