Myocardial ischemia/reperfusion injury is one of the main causes of morbidity and mortality in the world. This injury is experienced by patients suffering from cardiovascular diseases such as coronary heart diseases and subsequently undergoing reperfusion treatments in order to manage the conditions. Ischemia can be especially detrimental to the heart due to its high energy demand. Several cellular alterations have been observed upon the onset of ischemia. The danger created by cardiac ischemia is somewhat paradoxical in that a return of blood to the tissue, termed reperfusion, can result in further damage. The serum markers of myocardial injury are used to help in establishing the diagnosis of myocardial infarction. Use of various biochemical markers, including lactate dehydrogenase (LDH), creatine kinase (CK) total enzyme activity, CK-MB activity, Myoglobin, CK-MB mass, cardiac troponin I (cTnI), and cardiac troponin T (cTnT) have been investigated for noninvasive assessment of reperfusion. It is hoped that further studies will help refine the clinical use of new biomarkers like high-sensitivity cardiac troponin (hs-cTn) immunoassays in myocardial injury
___
1. Turer AT, Hill JA. Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. Am J Cardiol. 2010;106(3):360-8.
2. Dhalla NS, Elmoselhi AB, Hata T, Makino N. Status of myocardial antioxidants in ischemia–reperfusion injury. Cardiovasc Res. 2000;47:446-56.
3. Parlakpinar H, Sahna E, Ozgen U, Mızrak B, Acet A. Protective role of melatonin on myocardial ischemia-reperfusion-triggered apoptosis. Proceedings of the Turkish Pharmacological Society,17th National Congress of Pharmacology, 1st Clinical Pharmacology Symposium, Joint Meeting of the Turkish & Dutch. Pharmacological Societies; Oct 17-21, 2003, Antalya, Turkey.
4. Parlakpinar H, Sahna E, Acet A, Mizrak B, Polat A. Protective effect of caffeic acid phenethyl ester (CAPE) on myocardial ischemia– reperfusion-induced apoptotic cell death. Toxicology. 2005;209(1):1- 14.
5. Parlakpinar H, Ozer MK, Sahna E, Acet A. Attenuation of ischemiareperfusion-induced myocardial infarct size in rats by aminoguanidine. 6th Congress of the European Association for Clinical Pharmacology and Therapeutics, June, 24-28, 2003, Istanbul, Turkey.
6. Lefer DJ, Granger DN. Oxidative stress and cardiac disease. Am J Med. 2000;109(4):315-23.
7. Parlakpinar H, Orum MH, Sagir M. Pathophysiology of myocardial ischemia reperfusion injury: A review. Medicine Science. 2013;2(4):935-54.
8. Parlakpinar H, Orum MH. The antioxidant effect of melatonin on myocardial ischemia reperfusion injury in experimental studies. Medicine Science. 2014;3(4):1766-80.
9. Sahna E, Parlakpinar H, Turkoz Y, Acet A. Effects of melatonin on myocardial ischemia-reperfusion-induced infarct size and oxidative stress. Physiol Res. 2005;54(5):491-5.
10. Ozer MK, Parlakpınar H, Cigremis Y, Ucar M, Vardi N, Acet A. Ischemia-reperfusion leads to depletion of glutathione content and augmentation of malondialdehyde production in the rat heart from overproduction of oxidants: Can caffeic acid phenethyl ester (CAPE) protect the heart? Mol Cell Biochem. 2005;273(1-2):169-75.
11. Parlakpinar H, Orum MH, Acet A. Caffeic acid phenethyl ester (CAPE) and myocardial ischemia reperfusion (MI/R) injury. Inonu University Journal of Health Sciences. 2012;1:10-5.
12. Parlakpinar H, Orum MH, Acet A. Aminoguanidine and cardiovascular system. Inonu University Journal of Health Sciences. 2012;2:9-14.
13. Parlakpinar H, Ozer MK, Acet A. Effect of aminoguanidine on ischemia-reperfusion induced myocardial injury in rats. Mol Cell Biochem. 2005;277(1):137–42.
14. Cheung JY, Bonventre JV, Malis CD, Leaf A. Calcium and ischemic injury. N Engl J Med. 1986;314(26):1670-6.
15. Harman AW, Maxwell MJ. An evaluation of the role of calcium in cell injury. Annu Rev Pharmacol Toxicol. 1995;35:129-44.
16. Xu KY, Zweier JL, Becker LC. Hydroxyl radical inhibits sarcoplasmic reticulum Ca+2-ATPase function by direct attack on the ATP binding site. Circ Res. 1997;80(1):76-81.
17. Handrigan MT, Burns AR, Donnachie EM, Bowden RA. Hydroxyethyl starch inhibits neutrophil adhesion and transendothelial migration. Shock. 2005;24(5):434-9.
18. Lang JD Jr, Figueroa M, Chumley P, Aslan M, Hurt J, Tarpey MM, Alvarez B, Radi R, Freeman BA. Albumin and hydroxyethyl starch modulate oxidative inflammatory injury to vascular endothelium. Anesthesiology. 2004;100(1):51-8.
19. Lucchesi, BR. Modulation of leukocyte-mediated myocardial reperfusion injury. Annu Rev Physiol. 1991;84:400–11.
20. Kwong TC, Fitzpatrick PG, Rothbard RL. Activities of some enzymes in serum after therapy with intracoronary streptokinase in acute myocardial infarction. Clin Chem. 1984;30(5):731-4.
21. Panteghini M, Cuccia C, Calarco M, Gei P, Bozetti E, Visioli O. Serum enzymes in acute myocardial infarction after intracoronary thrombolysis. Clin Chem. 1986;19(5):294-7.
22. Aksungur Z, Turkoz Y. Acute Coronary Syndrome and Cardiac Markers. Inonu University Journal of Health Sciences. 2016;5(1): 67- 73.
23. Panteghini M, Cuccia C, Calarco M. Serum enzymes as indicators of coronary reperfusion in acute myocardial infarction. Adv Clin Enzymol. 1987;5:87-93.
24. Ingwall JS, Kramer MF, Fifer MA, Lorell BH, Shemin R, Grossman W, Allen PD. The creatine kinase system in normal and diseased human myocardium. N Engl J Med. 1985;313(17):1050–4.
25. Lott JA, Stang JM. Differential diagnosis of patients with abnormal serum creatine kinase isoenzymes. Clin Lab Med. 1989;9(4):627-42.
26. Gore JM, Roberts R, Ball SP, Montero A, Goldberg RJ, Dalen JE. Peak creatine kinase as a measure of effectiveness of thrombolytic therapy in acute myocardial infarction. Am J Cardiol. 1987;59(15):1234-8.
27. Garabedian HD, Gold HK, Yasuda T, Johns JA, Finkelstein DM, Gaivin RJ, Cobbaert C, Leinbach RC, Collen D. Detection of coronary artery reperfusion with creatine kinase-MB determinations during thrombolytic therapy: Correlation with acute angiography. J Am Coll Cardiol. 1987;11(4):729-34.
28. Tanasijevic MJ, Cannon CP, Antman EM, Wybenga DR, Fischer GA, Grudzien C, Gibson CM, Winkelman JW, Braunwald E. Myoglobin, creatine-kinase-MB and cardiac troponin-I 60-minute ratios predict infarct-related artery patency after thrombolysis for acute myocardial infarction. J Am Coll Cardiol. 1999;34(3):739-47.
29. The TIMI. Study Group Thrombolysis in Myocardial Infarction (TIMI) trial. Phase I findings. N Engl J Med. 1985;312(14):932–6.
30. Zhu HL, Xing W, Ou SL, Zhang C, Zuo XX, Feng YS, Luo O, Chen GW, Liu MD, Jiang L, Xiao XZ, Wang KK. Ischemic postconditioning protects cardiomyocytes against ischemia/reperfusion injury by inducing MIP2. Exp Mol Med. 2011;43(8):437-45 . 31. Xing SS, Xing QC, Zhang Y, Zhang W. Effect of serum creatine kinase-MBmass on the early and hierarchical diagnosis of related artery reperfusion in acute myocardial infarction. Postgrad Med J. 2007;83(980):422-5.
32. Danese E, Montagnana M. An historical approach to the diagnostic biomarkers of acute coronary syndrome. Ann Transl Med. 2016;4(10):194
33. Zot AS, Potter JD. Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction. Annu Rev Biophys Biophys Chem. 1987;16:535–9.
34. Katus HA, Remppis A, Neumann FJ, Scheffold T, Diederich KW, Vinar G, Noe A, Matern G, Kuebler W. Diagnostic efficiency of troponin T measurements in acute myocardial infarction. Circulation. 1991;83(3):902–12.
35. Adams JE III, Bodor GS, Da´vila-Roma´n VG, Delmez JA, Apple FS, Ladenson JH, Jaffe AS. Cardiac troponin I. A marker with high specificity for cardiac injury. Circulation. 1993;88(1):101–6.
36. Adams JE III, Schechtman KB, Landt Y, Ladenson JH, Jaffe AS. Comparable detection of acute myocardial infarction by creatine kinase MB isoenzyme and cardiac troponin I. Clin Chem. 1994;40(7 Pt 1):1291–5.
37. Christenson RH, Apple FS, Morgan DL, Alonsozana GL, Mascotti K, Olson M, McCormack RT, Wians FH Jr, Keffer JH, Duh SH. Cardiac troponin I measurement on the ACCESS® immunoassay system: analytical and clinical performance characteristics. Clin Chem. 1998;44(3):494–501.
38. Wu AHB, Lane PL. Metaanalysis in clinical chemistry: validation of cardiac troponin T as a marker for ischemic heart diseases. Clin Chem. 1995;41(8 Pt 2):1228–33.
39. Lavin F, Kane M, Forde A, Gannon F, Daly K. Comparison of five cardiac markers in the detection of reperfusion after thrombolysis in acute myocardial infarction. Br Heart J. 1995;73(5):422–7.
40. Remppis A, Scheffold T, Greten J, Haass M, Greten T, Kübler W, Katus HA. Intracellular compartmentation of troponin T: release kinetics after global ischemia and calcium paradox in the isolated perfused rat heart. J Mol Cell Cardiol. 1995;27(2):793–803.
41. Licka M, Zimmermann R, Zehelein J, Dengler TJ, Katus HA, Kübler W. Troponin T concentrations 72 hours after myocardial infarction as a serological estimate of infarct size. Heart. 2002;87(6):520-4.
42. Remppis A, Scheffold T, Karrer O, Zehelein J, Hamm C, Grünig E, Bode C, Kübler W, Katus HA. Assessment of reperfusion of the infarct zone after acute myocardial infarction by serial cardiac troponin T measurements in serum. Br Heart J. 1994;71(3):242-8.
43. Cummins B, Auckland ML, Cummins P. Cardiac-specific troponin-I radioimmunoassay in the diagnosis of acute myocardial infarction. Am Heart J. 1987;113(6):1333-44.
44. Lippi G. Biomarkers: Novel troponin immunoassay for early ACS rule-out. Nat Rev Cardiol. 2016;13(1):9-10.
45. Stone MJ, Waterman MR, Harimoto D, Murray G, Wilson N, Platt MR, Blomqvist G, Willerson JT. Serum myoglobin level as a diagnostic test in patients with acute myocardial infarction. Br Heart J. 1977;39(4):375-80.
46. Varki AP, Roby DS, Watts H, Zatuchni J. Serum myoglobin in acute myocardial infarction: a clinical study and review of the literature. Am Heart J. 1978;96(5):680-8.
47. Christenson RH, Ohman EM, Topol EJ, Peck S, Newby LK, Duh SH, Kereiakes DJ, Worley SJ, Alosozana GL, Wall TC, Califf RM. Assessment of coronary reperfusion after thrombolysis with a model combining myoglobin, creatine kinase-MB, and clinical variables. TAMI-7 Study Group. Thrombolysis and Angioplasty in Myocardial Infarction-7. Circulation. 1997;96(6):1776-82.
48. Ellis AK, Little T, Masud ARZ, Liberman HA, Morris DC, Klocke FJ. Early noninvasive detection of successful reperfusion in patients with acute myocardial infarction. Circulation. 1988;78(6):1352-7.
49. Ellis AK, Saran BR. Kinetics of myoglobin release and prediction of myocardial myoglobin depletion after coronary artery reperfusion. Circulation. 1989;80(3):676-83.
50. Spangenthal EJ, Ellis AK. Cardiac and skeletal muscle myoglobin release after reperfusion of injured myocardium in dogs with systemic hypotension. Circulation. 1995;91(10):2635-41.
51. Kitagawa H, Yamazaki T, Akiyama T, Sugimachi M, Sunagawa K, Mori H. Microdialysis separately monitors myocardial interstitial myoglobin during ischemia and reperfusion. Am J Physiol Heart Circ Physiol. 2005;289(2):924-30.
52. Batsakis JG, Capps RD, Briere RO. Clinical experience with a new assay for LDH and LDH isoenzyme activities. Mich Med. 1967;66(3):182-6.
53. Pasupathi P, Rao YY, Farook J, Bakthavathsalam G. Biochemical cardiac markers in clinical cardiology. J Medicine. 2009;10:100-8.
54. Lott JA, Stang JM. Serum enzymes and isoenzymes in the diagnosis and differential diagnosis of myocardial ischemia and necrosis. Clin Chem. 1980;26(9):1241-50.
55. Leung FY, Henderson AR. Thin-layer agarose electrophoresis of lactate dehydrogenase isoenzymes in serum: a note on the method of reporting and on the lactate dehydrogenase isoenzyme-1/isoenzyme-2 ratio in acute myocardial infarction. Clin Chem. 1979;25(2):209-11.
56. Varley H, Gowenlock AH, Bell M. Enzymes, In: Practical Clinical Biochemistry, Vol. I, 5th edn. William Heinemann Medical Books Ltd. London 1984;685-770.
57. Ji L, Fu F, Zhang L, Liu W, Cai X, Zhang L, Zheng Q, Zhang H, Gao F. Insulin attenuates myocardial ischemia/reperfusion injury via reducing oxidative/nitrative stress. Am J Physiol Endocrinol Metab. 2010;298(4):871-80.
58. Wu B, Jiang H, Lin R, Cui B, Wen H, Lu Z. Pretreatment with Btype Natriuretic peptide protects the heart from ischemia-reperfusion injury by inhibiting myocardial apoptosis. Exp. Med. 2009;219(2):107-14.
59. Karaca P, Konuralp C, Enc Y, Süzer A, Sokullu O, Ayoglu U, Cicek S. Cardioprotective effect of aprotinin on myocardial ischemia/reperfusion injury during cardiopulmonary bypass. Circ J. 2006;70(11):1432-6.
60. Gaze DC. The role of existing and novel cardiac biomarkers for cardioprotection. Curr Opin Invest Drugs. 2007;8(9):711–7.
61. Spieckermann PG, Nordbeck H, Preusse CJ. From heart to plasma. In: Hearse DJ (ed). Enzymes in Cardiology. John Wiley and Sons, Ireland, 1979:81-95.
62. Panteghini M, Pagani F, Cuccio C. Effects of therapeutic coronary reperfusion on aspartate aminotransferase isoenzymes in sera of patients with acute myocardial infarction. Clin Chem. 1989;35(6):909-12.
63. Taskiran A, Eskiocak S, Ege T, Duran E, Gulen S. Investigation of myocardial tissue injury and oxidant stress during coronary bypass. Turk J Biochem. 2004;29(2);193-8.
64. Zabel M, Hohnloser SH, Koster W, Prinz M, Kasper W, Just H. Analysis of creatine kinase, CK-MB, myoglobin, and troponin T time- activity curves for early assessment of coronary artery reperfusion after intravenous thrombolysis. Circulation. 1993;87(5):1542-50.
65. Morrow DA, Cannon CP, Jesse RL, Newby LK, Ravkilde J, Storrow AB, Wu AH, Christenson RH. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: Clinical Characteristics and Utilization of Biochemical Markers in Acute Coronary Syndromes. Circulation. 2007;115(13):356-75.
66. Cardiac marker. https:/wikipedia.org/wiki/Cardiac_marker access date 13.07.2016