Low Level Laser Therapy in Orthodontics

Lasers are widely used in most of the fields in dentistry for many years and they have recently gained popularity in orthodontic practice. Most common procedures with laser applications in orthodontics could be summarized as acceleration of tooth movement, pain reduction after force application, bone regeneration in the median palatal suture area during maxillary expansion or consolidation phase after distraction osteogenesis, enamel etching during bonding procedure, reduction of enamel decalcification, debonding of ceramic brackets, soft tissue applications such as gingival recontouring and attachment placement for impacted teeth. In this review, biostimulation effect or low level laser therapy in orthodontics will be exclusively evaluated.

Düşük Doz Lazerlerin Ortodonti Alanında Kullanımı

Lazerler genellikle yıllardır diş hekimliğinin birçok alanında kullanılmaktadır ve son yıllarda ortodonti pratiğinde popülarite kazanmıştır. Ortodontide lazerin en yaygın kullanım alanları; diş hareketinin hızlandırılması, kuvvet uygulanmasını takiben ağrının azaltılması, maksiller genişletme esnasında veya distraksiyon osteogenezisin konsolidasyon safhasında midpalatal sütur alanında kemik rejenerasyonu, bonding prosedürü esnasında minenin pürüzlendirilmesi, mine dekalsifikasyonunun azaltılması, seramik braketlerin debonding işlemi esnasında kullanımı, diş eti konturlaması ve gömülü dişler için ataçman yerleştirmeyi içeren yumuşak doku uygulamaları şeklinde özetlenebilir. Bu derlemede ortodontide lazerin biyostimülasyon etkisi veya düşük doz lazer tedavisi detaylı bir şekilde değerlendirilecektir

___

Coluzzi JD. Fundamentals of lasers in dentistry: basic science, tissue interaction and instrumentation. J Laser Dent 2008; 16: 4-10.

Kravitz ND, Kusnoto B. Soft-tissue lasers in orthodontics: an overview. Am J Orthod Dentofacial Orthop 2008; 133(Suppl 4): 110-4.

Takac S, Stojanović S. [Characteristics of laser light]. Med Pregl 1999; 52: 29-34.

Miserendino LJ, Levy G, Miserendino CA: Laser interaction with biologic tissues. In: Miserendino LJ, Pick RM. Lasers in dentistry. Chicago: Quintessence, 1995; p.39-55.

. Niemz MH. Laser-tissue interaction: fundamentals and applications, 3rd enlarged ed. Berlin:Springer, 2007.

Nalcaci R, Cokakoglu S. Lasers in orthodontics. Eur J Dent 2013; 7(Suppl 1): 119-25.

Vitruk P. Oral soft tissue laser ablative and coagulative efficiencies spectra. Implant Practice US 2014; 7: 22-7.

Convissar RA. Principles and Practice of Laser Dentistry. 1st ed. St Louis: Mosby Elsevier, 2011; p.18-20.

Goyal M, Makkar S, Pasricha S. Low level laser therapy in dentistry. Int J Laser Dent 2013; 3: 82-8.

Krishnan V, Davidovitch Z. On a path to unfolding the biological mechanisms of orthodontic tooth movement. J Dent Res 2009; 88: 597-608.

Fujita S, Yamaguchi M, Utsunomiya T, Yamamoto H, Kasai K. Lowenergy laser stimulates tooth movement velocity via expression of RANK and RANKL. Orthod Craniofac Res 2008; 11: 143-55.

Yamaguchia M, Fujita S, Yoshida T, Oikawa K, Utsunomiya T, Yamamoto H, et al. Low-energy laser irradiation stimulates the tooth movement velocity via expression of M-CSF and c-fms. Orthodontic Waves 2007; 66: 139-48.

Kawasaki K, Shimizu N. Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med 2000; 26: 282-91.

Yamaguchi M, Hayashi M, Fujita S, Yoshida T, Utsunomiya T, Yamamoto H, et al. Low-energy laser irradiation facilitates the velocity of tooth movement and the expressions of matrix metalloproteinase-9, cathepsin K, and alpha(v) beta(3) integrin in rats. Eur J Orthod 2010; 32: 131-9.

Cruz DR, Kohara EK, Ribeiro MS, Wetter NU. Effects of lowintensity laser therapy on the orthodontic movement velocity of human teeth: a preliminary study. Lasers Surg Med 2004; 35: 117-20.

Limpanichkul W, Godfrey K, Srisuk N, Rattanayatikul C. Effects of low-level laser therapy on the rate of orthodontic tooth movement. Orthod Craniofac Res 2006; 9: 38-43.

Youssef M, Ashkar S, Hamade E, Gutknecht N, Lampert F, Mir M. The effect of low-level laser therapy during orthodontic movement: a preliminary study. Lasers Med Sci 2008; 23: 27-33.

Sousa MV, Scanavini MA, Sannomiya EK, Velasco LG, Angelieri F. Influence of low-level laser on the speed of orthodontic movement. Photomed Laser Surg 2011; 29: 191-6.

Doshi-Mehta G, Bhad-Patil WA. Efficacy of low-intensity laser therapy in reducing treatment time and orthodontic pain: a clinical investigation. Am J Orthod Dentofacial Orthop 2012; 141: 289-97.

Genc G, Kocadereli I, Tasar F, Kilinc K, El S, Sarkarati B. Effect of low-level laser therapy (LLLT) on orthodontic tooth movement. Lasers Med Sci 2013; 28: 41-7.

Altan BA, Sokucu O, Ozkut MM, Inan S. Metrical and histological investigation of the effects of low-level laser therapy on orthodontic tooth movement. Lasers Med Sci 2012; 27: 131-40.

Seifi M, Shafeei HA, Daneshdoost S, Mir M. Effects of two types of low-level laser wave lengths (850 and 630 nm) on the orthodontic tooth movements in rabbits. Lasers Med Sci 2007; 22: 261-4.

Marquezan M, Bolognese AM, Araújo MT. Effects of two low-intensity laser therapy protocols on experimental tooth movement. Photomed Laser Surg 2010; 28: 757-62.

Salehi P, Heidari S, Tanideh N, Torkan S. Effect of low-level laser irradiation on the rate and short-term stability of rotational tooth movement in dogs. Am J Orthod Dentofacial Orthop 2015; 147: 578-86.

Roth PM, Thrash WJ. Effect of transcutaneous electrical nerve stimulation for controlling pain associated with orthodontic tooth movement. Am J Orthod Dentofacial Orthop 1986; 90: 132-8.

Weiss DD, Carver DM. Transcutaneous electrical neural stimulation for pain control. J Clin Orhod 1994; 28: 670-1.

Marie SS, Powers M, Sheridan JJ. Vibratory stimulation as a method of reducing pain after orthodontic appliance adjustment. J Clin Orthod 2003; 37: 205-8. 28. Proffit WR. Contemporary Orthodontics. 3rd ed. St Louis:Mosby Elsevier, 2000; p. 280-1.

Walker JB, Buring SM. NSAID impairment of orthodontic tooth movement. Ann Pharmacother 2001; 35: 113-5.

Albertini R, Aimbire F, Villaverde AB, Silva JA Jr, Costa MS. COX-2 mRNA expression decreases in the subplantar muscle of rat paw subjected to carrageenan-induced inflammation after low level laser therapy. Inflamm Res 2007; 56: 228-9.

Albertini R, Villaverde AB, Aimbire F, Bjordal J, Brugnera A, Mittmann J, et al. Cytokine mRNA expression is decreased in the subplantar muscle of rat paw subjected to carrageenan-induced inflammation after low-level laser therapy. Photomed Laser Surg 2008; 26: 19-24.

Chow RT, David MA, Armati PJ. 830 nm laser irradiation induces varicosity formation, reduces mitochondrial membrane potential and blocks fast axonal flow in small and medium diameter rat dorsal root ganglion neurons: implications for the analgesic effects of 830 nm laser. J Peripher Nerv Syst 2007; 12: 28-39.

Laakso EL, Cabot PJ. Nociceptive scores and endorphincontaining cells reduced by low-level laser therapy (LLLT) in inflamed paws of Wistar rat. Photomed Laser Surg 2005; 23: 325.

Lim HM, Lew KK, Tay DK. A clinical investigation of the efficacy of low level laser therapy in reducing orthodontic postadjustment pain. Am J Orthod Dentofacial Orthop 1995; 108: 614-22.

Fujiyama K, Deguchi T, Murakami T, Fujii A, Kushima K, TakanoYamamoto T. Clinical effect of CO(2) laser in reducing pain in orthodontics. Angle Orthod 2008; 78: 299-303.

Tortamano A, Lenzi DC, Haddad AC, Bottino MC, Dominguez GC, Vigorito JW. Low-level laser therapy for pain caused by placement of the first orthodontic archwire: a randomized clinical trial. Am J Orthod Dentofacial Orthop 2009; 136: 662-7.

Bicakci AA, Kocoglu-Altan B, Toker H, Mutaf I, Sumer Z. Efficiency of low-level laser therapy in reducing pain induced by orthodontic forces. Photomed Laser Surg 2012; 30: 460-5.

Artés-Ribas M, Arnabat-Dominguez J, Puigdollers A. Analgesic effect of a low-level laser therapy (830 nm) in early orthodontic treatment. Lasers Med Sci 2013; 28: 335-41.

Shi Q, Yang S, Jia F, Xu J. Does low level laser therapy relieve the pain caused by the placement of the orthodontic separators?--A meta-analysis. Head Face Med 2015; 11: 28.

Turhani D, Scheriau M, Kapral D, Benesch T, Jonke E, Bantleon HP. Pain relief by single low-level laser irradiation in orthodontic patients undergoing fixed appliance therapy. Am J Orthod Dentofacial Orthop 2006; 130: 371-7.

Bishara SE, Staley RN. Maxillary expansion: clinical implications. Am J Orthod Dentofacial Orthop 1987; 91: 3-14.

Saito S, Shimizu N. Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat. Am J Orthod Dentofacial Orthop 1997; 111: 525-32.

Amini F, Najaf Abadi MP, Mollaei M. Evaluating the effect of laser irradiation on bone regeneration in midpalatal suture concurrent to rapid palatal expansion in rats. J Orthod Sci 2015; 4: 65-71.

Rosa CB, Habib FA, de Araújo TM, Dos Santos JN, Cangussu MC, Barbosa AF, et al. Laser and LED phototherapy on midpalatal suture after rapid maxilla expansion: Raman and histological analysis. Lasers Med Sci 2017; 32: 263-74.

Angeletti P, Pereira MD, Gomes HC, Hino CT, Ferreira LM. Effect of low-level laser therapy (GaAlAs) on bone regeneration in midpalatal anterior suture after surgically assisted rapid maxillary expansion. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109: e38-46.

Cepera F, Torres FC, Scanavini MA, Paranhos LR, Capelozza Filho L, Cardoso MA, et al. Effect of a low-level laser on bone regeneration after rapid maxillary expansion. Am J Orthod Dentofacial Orthop 2012; 141: 444-50.

Ferreira FN, Gondim JO, Neto JJ, Dos Santos PC, de Freitas Pontes KM, Kurita LM, et al. Effects of low-level laser therapy on bone regeneration of the midpalatal suture after rapid maxillary expansion. Lasers Med Sci 2016; 31: 907-13.

Moawad SG, Bouserhal J, Al-Munajed MK. Assessment of the efficiency of Erbium-YAG laser as an assistant method to rapid maxillary expansion: An in vivo study. Int Orthod 2016; 14: 46275.

Pereira MA, Luiz de Freitas PH, da Rosa TF, Xavier CB. Understanding distraction osteogenesis on the maxillofacial complex: a literature review. J Oral Maxillofac Surg 2007; 65: 2518-23.

. Mofid MM, Manson PN, Robertson BC, Tufaro AP, Elias JJ, Vander Kolk CA. Craniofacial distraction osteogenesis: a review of 3278 cases. Plast Reconstr Surg 2001; 108: 1103-14.

Miloro M, Miller JJ, Stoner JA. Low-level laser effect on mandibular distraction osteogenesis. J Oral Maxillofac Surg 2007; 65: 168-76.

Hübler R, Blando E, Gaião L, Kreisner PE, Post LK, Xavier CB, et al. Effects of low-level laser therapy on bone formed after distraction osteogenesis. Lasers Med Sci 2010; 25: 213-9.

Kreisner PE, Blaya DS, Gaião L, Maciel-Santos ME, Etges A, Santana-Filho M, et al. Histological evaluation of the effect of low-level laser on distraction osteogenesis in rabbit mandibles. Med Oral Patol Oral Cir Bucal 2010; 15: e616-8.

Mayer L, Freddo AL, Blaya DS, Oliveira MG, De Conto F. Effects of-level laser therapy on distraction osteogenesis: a histological analysis. Rev Fac Odontol Passo Fundo 2012; 17: 326-31.

Medeiros MA, Nascimento LE, Lau TC, Mineiro AL, Pithon MM, Sant'Anna EF. Effects of laser vs ultrasound on bone healing after distraction osteogenesis: A histomorphometric analysis. Angle Orthod 2015; 85: 555-61.