Farklı Plak Kontrol Yöntemleri ve Hidrotermal Yaşlanmanın Monolitik Zirkonyanın Yapısal Özelliklerine Etkisi
Amaç: Bu çalışma, profesyonel diş temizliğinin bir parçası olan plak uzaklaştırma yöntemleri ile hidrotermal yaşlanmanın zirkonyanın yapısal özelliklerine etkisini araştırmayı amaçlamıştır. Gereç ve Yöntemler: Altı gruba bölünmüş 72 adet disk şeklinde monolitik zirkonya örnek (çap 12 mm ve kalınlık 1 mm) otoklavda 0,2 MPa ve 134 °C’de 2 saat hidrotermal yaşlandırma öncesi çelik küret, ultrasonik çelik kazıyıcı, sodyum bikarbonat, eritritol ve glisin abraziv toz ile yüzey işlemine tabi tutuldu. Örnekler, kristal yapıyı değerlendirmek için X-ışını kırınımı yöntemi, mikro yapı için taramalı elektron mikroskobu ve yüzey pürüzlülüğü için atomik kuvvet mikroskobu kullanılarak analiz edildi. Ayrıca ıslanabilirlik ve sertlik değerlendirmeleri için temas açısı ve Vickers sertlik ölçümleri yapıldı. Malzemenin dayanıklılığını ölçmek için ise çift eksenli bükme testi uygulandı. Bulgular: Sonuçlara göre zirkonyumun kristal yapısında, yüzey pürüzlülüğünde ve eğilme dayanımında önemli bir değişiklik olmadığı görüldü (p>0,05). Çelik küret ve ultrasonik çelik kazıyıcı gruplarında diğer gruplara göre yüzey sertlik değerlerinde önemli düşüş ve ıslanabilirlik değerlerinde anlamlı artış gözlendi (p
Influence of Different Plaque Control Methods and Hydrothermal Aging on Structural Properties of Monolithic Zirconia
Objective: This study aimed to investigate the effect of hydrothermal aging and various plaque removal methods, which are a part of professional dental cleaning, on zirconia’s structural properties. Materials and Methods: Seventy-two disk-shaped monolithic zirconia specimens (diameter 12 mm and thickness 1 mm) divided into six groups were subjected to no surface treatment, instrumentation with steel curette and ultrasonic steel scaler, and air abrasion with sodium bicarbonate, erythritol, and glycine before being aged in an autoclave at 0.2 MPa and 134 °C for 2 h. Specimens were analyzed using X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectrometry, and atomic force microscopy to evaluate crystal structure, microstructure, and surface roughness. Further, the contact angle and Vickers hardness measurements were performed for wettability and hardness evaluations. A biaxial bending test was applied to measure the durability of the material. Results: According to the results, no significant change was found in the crystal structure, surface roughness, and bending strength of zirconia (p>0.05). In contrast, a substantial decrease in surface hardness values and a significant increase in wettability values were observed in the steel curette and ultrasonic steel scaler groups compared with other groups (p
___
- 1. Kontonasaki E, Rigos AE, Ilia C, Istantsos T. Monolithic Zirconia: An Update to Current Knowledge. Optical Properties, Wear, and Clinical Performance. Dent J (Basel) 2019; 7: 90.
- 2. Kisi E, Howard C. Crystal structures of zirconia phases and their interrelation. Key Eng Mater 1998; 153/154: 1–35.
- 3. Garvie RC, Nicholson PS. Phase analysis in zirconia systems. Journal of the American Ceramic Society 1972; 55: 303-5. 4. Kelly JR. Dental ceramics: current thinking and trends. Dent Clin North Am 2004; 48: viii, 513-30.
- 5. Zarone F, Di Mauro MI, Ausiello P, Ruggiero G, Sorrentino R. Current status on lithium disilicate and zirconia: a narrative review. BMC Oral Health 2019; 19: 134.
- 6. Chevalier J, Cales B, Drouin JM. Low‐temperature aging of Y‐TZP ceramics. Journal of the American Ceramic Society 1999; 82: 2150-4.
- 7. Kontonasaki E, Giasimakopoulos P, Rigos AE. Strength and aging resistance of monolithic zirconia: an update to current knowledge. Jpn Dent Sci Rev 2020; 56: 1-23.
- 8. Lee JK, Kim H. Surface crack initiation in 2Y-TZP ceramics by lowtemperature aging. Ceram Int 1994; 20: 413–8.
- 9. Kim HT, Han JS, Yang JH, Lee JB, Kim SH. The effect of low temperature aging on the mechanical property & phase stability of Y-TZP ceramics. J Adv Prosthodont 2009; 1: 113-7.
- 10. Griffin JD Jr. Combining monolithic zirconia crowns, digital impressioning, and regenerative cement for a predictable restorative alternative to PFM. Compend Contin Educ Dent 2013; 34: 212-22.
- 11. Sulaiman TA, Abdulmajeed AA, Delgado A, Donovan TE. Fracture rate of 188695 lithium disilicate and zirconia ceramic restorations after up to 7.5 years of clinical service: A dental laboratory survey. J Prosthet Dent 2020; 123: 807-10.
- 12. Axelsson P, Nyström B, Lindhe J. The long-term effect of a plaque control program on tooth mortality, caries and periodontal disease in adults. Results after 30 years of maintenance. J Clin Periodontol 2004; 31: 749-57.
- 13. Walmsley AD, Lea SC, Landini G, Moses AJ. Advances in power driven pocket/root instrumentation. J Clin Periodontol 2008; 35(8 Suppl): 22-8.
- 14. Bühler J, Amato M, Weiger R, Walter C. A systematic review on the patient perception of periodontal treatment using air polishing devices. Int J Dent Hyg 2016; 14: 4-14.
- 15. Kocher T, Rühling A, Momsen H, Plagmann HC. Effectiveness of subgingival instrumentation with power-driven instruments in the hands of experienced and inexperienced operators. A study on manikins. J Clin Periodontol 1997; 24: 498-504.
- 16. Canakçi CF, Canakçi V. Pain experienced by patients undergoing different periodontal therapies. J Am Dent Assoc 2007; 138: 1563-73.
- 17. BLACK RB. Airbrasive: some fundamentals. J Am Dent Assoc 1950; 41: 701-10.
- 18. Barnes CM, Covey D, Watanabe H, Simetich B, Schulte JR, Chen H. An in vitro comparison of the effects of various air polishing powders on enamel and selected esthetic restorative materials. J Clin Dent 2014; 25: 76-87.
- 19. Al-Sinaidi A, Preethanath RS. The effect of fixed partial dentures on periodontal status of abutment teeth. The Saudi Journal for Dental Research 2014; 5: 104-8.
- 20. Reich S, Petschelt A, Lohbauer U. The effect of finish line preparation and layer thickness on the failure load and fractography of ZrO2 copings. J Prosthet Dent 2008; 99: 369-76.
- 21. DIN EN ISO 6872:2019 Dentistry—ceramic materials, International Organization for Standardization, Geneva, Switzerland (2019).
- 22. Chevalier J, Loh J, Gremillard L, Meille S, Adolfson E. Lowtemperature degradation in zirconia with a porous surface. Acta Biomater 2011; 7: 2986-93.
- 23. Vigolo P, Motterle M. An in vitro evaluation of zirconia surface roughness caused by different scaling methods. J Prosthet Dent 2010; 103: 283-7.
- 24. Ota-Tsuzuki C, Martins FL, Giorgetti AP, de Freitas PM, Duarte PM. In vitro adhesion of Streptococcus sanguinis to dentine root surface after treatment with Er:YAG laser, ultrasonic system, or manual curette. Photomed Laser Surg 2009; 27: 735-41.
- 25. Nakazawa K, Nakamura K, Harada A, Shirato M, Inagaki R, Örtengren U, et al. Surface properties of dental zirconia ceramics affected by ultrasonic scaling and low-temperature degradation. PLoS One 2018; 13: e0203849.
- 26. Bühler J, Schmidli F, Weiger R, Walter C. Analysis of the effects of air polishing powders containing sodium bicarbonate and glycine on human teeth. Clin Oral Investig 2015; 19: 877-85.
- 27. Toraya H, Yoshimura M, Somiya S. Calibration Curve for Quantitative Analysis of the Monoclinic‐Tetragonal ZrO2 System by X‐Ray Diffraction. Journal of the American Ceramic Society 1984; 67: 119-21.
- 28. Lang NP, Schätzle MA, Löe H. Gingivitis as a risk factor in periodontal disease. J Clin Periodontol 2009; 36 Suppl 10: 3-8.
- 29. Rashid H. The effect of surface roughness on ceramics used in dentistry: A review of literature. Eur J Dent 2014; 8: 571-9.
- 30. Hao Y, Huang X, Zhou X, Li M, Ren B, Peng X, et al. Influence of Dental Prosthesis and Restorative Materials Interface on Oral Biofilms. Int J Mol Sci 2018; 19: 3157.
- 31. Lamont T, Worthington HV, Clarkson JE, Beirne PV. Routine scale and polish for periodontal health in adults. Cochrane Database Syst Rev 2018; 12: CD004625.
- 32. Rosén B, Olavi G, Badersten A, Rönström A, Söderholm G, Egelberg J. Effect of different frequencies of preventive maintenance treatment on periodontal conditions. 5-Year observations in general dentistry patients. J Clin Periodontol 1999; 26: 225-33.
- 33. Lee JH, Kim SH, Han JS, Yeo ISL, Yoon HI, Lee J. Effects of ultrasonic scaling on the optical properties and surface characteristics of highly translucent CAD/CAM ceramic restorative materials: An in vitro study. Ceramics International 2019; 45: 14594-601.
- 34. Checketts MR, Turkyilmaz I, Asar NV. An investigation of the effect of scaling-induced surface roughness on bacterial adhesion in common fixed dental restorative materials. J Prosthet Dent 2014; 112: 1265-70.
- 35. Vigolo P, Buzzo O, Buzzo M, Mutinelli S. An In Vitro Evaluation of Alumina, Zirconia, and Lithium Disilicate Surface Roughness Caused by Two Scaling Instruments. J Prosthodont 2017; 26: 129-35.
- 36. Giacomelli L, Salerno M, Derchi G, Genovesi A, Paganin PP, Covani U. Effect of air polishing with glycine and bicarbonate powders on a nanocomposite used in dental restorations: an in vitro study. Int J Periodontics Restorative Dent 2011; 31: e51-6.
- 37. Janiszewska-Olszowska J, Drozdzik A, Tandecka K, Grocholewicz K. Effect of air-polishing on surface roughness of composite dental restorative material - comparison of three different airpolishing powders. BMC Oral Health 2020; 20: 30.
- 38. Cobb CM, Daubert DM, Davis K, Deming J, Flemmig TF, Pattison A, et al. Consensus Conference Findings on Supragingival and Subgingival Air Polishing. Compend Contin Educ Dent 2017; 38: e1-4.
- 39. Chantranikul N, Salimee P. Biaxial flexural strength of bilayered zirconia using various veneering ceramics. J Adv Prosthodont 2015; 7: 358-67.
- 40. Egilmez F, Ergun G, Cekic-Nagas I, Vallittu PK, Lassila LV. Factors affecting the mechanical behavior of Y-TZP. J Mech Behav Biomed Mater 2014; 37: 78-87.
- 41. Pereira GKR, Muller C, Wandscher VF, Rippe MP, Kleverlaan CJ, Valandro LF. Comparison of different low-temperature aging protocols: its effects on the mechanical behavior of Y-TZP ceramics. J Mech Behav Biomed Mater 2016; 60: 324-30.
- 42. Moqbel NM, Al-Akhali M, Wille S, Kern M. Influence of Aging on Biaxial Flexural Strength and Hardness of Translucent 3Y-TZP. Materials (Basel) 2019; 13: 27.
- 43. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999; 20: 1-25.
- 44. Kelly PM, Ball CJ. Crystallography of stress‐induced martensitic transformations in partially stabilized zirconia. Journal of the American Ceramic Society 1986; 69: 259-64.
- 45. Fischer H, Schäfer M, Marx R. Effect of surface roughness on flexural strength of veneer ceramics. J Dent Res 2003; 82: 972-5.
- 46. Pereira G, Amaral M, Cesar PF, Bottino MC, Kleverlaan CJ, Valandro LF. Effect of low-temperature aging on the mechanical behavior of ground Y-TZP. J Mech Behav Biomed Mater 2015; 45: 183-92.
- 47. Pereira GKR, Muller C, Wandscher VF, Rippe MP, Kleverlaan CJ, Valandro LF. Comparison of different low-temperature aging protocols: its effects on the mechanical behavior of Y-TZP ceramics. J Mech Behav Biomed Mater 2016; 60: 324-30.
- 48. Lawson S. Environmental degradation of zirconia ceramics. Journal of the European Ceramic Society 1995; 15: 485-502.
- 49. Kasemo B, Gold J. Implant surfaces and interface processes. Adv Dent Res 1999; 13: 8-20.
- 50. Nabert-Georgi C, Rodloff AC, Jentsch H, Reissmann DR, Schaumann R, Stingu CS. Influence of oral bacteria on adhesion of Streptococcus mutans and Streptococcus sanguinis to dental materials. Clin Exp Dent Res 2018; 4: 72-7.
- 51. John G, Becker J, Schwarz F. Effects of different titanium zirconium implant surfaces on initial supragingival plaque formation. Clin Oral Implants Res 2017; 28: e84-e90.
- 52. Sturz CR, Faber FJ, Scheer M, Rothamel D, Neugebauer J. Effects of various chair-side surface treatment methods on dental restorative materials with respect to contact angles and surface roughness. Dent Mater J 2015; 34: 796-813.