Accuracy of Proximal Caries Depth Measurements: Comparison of Two Computed Cone Beam Tomography and Storage Phosphor Plate Systems

Amaç: Bu çalışmanın amacı, NewTom 9000 [konik ışınlı bilgisayarlı tomografisi (CBCT)] ve Accu-I-Tomo [sınırlı CBTC (LCBCT)] dental volümetrik tomografi sistemleri ile Digora Optime [Depolama fosfor tabakası (SPP)] fosfor plak görüntüleme sistemini, dişlerin ara yüzeylerinde oluşturulan farklı şekil ve boyutlardaki defekt derinlikleri açısından karşılaştırmalı olarak değerlendirmektir.Gereç ve Yöntemler: Çürük lezyonu bulunmayan 50 adet kesici dişin 30 tanesi 3 eşit gruba bölündü. Ara yüzeylerinde mekanik olarak farklı şekil ve boyutlarda defekt oluşturulan dişler aproksimal kontakta olacak şekilde akrilik bloklara yerleştirildi. Blokların CBCT, LCBCT ve SPP görüntüleme sistemleri ile görüntüleri alındı. Altmış adet defektin derinlik ölçümleri dijital görüntüler üzerinde 3 gözlemci tarafından gerçekleştirildi. Ölçümlerin altın standardı, mikroskobik kesitler üzerinde 3 gözlemcinin yaptığı ölçümlerin ortalaması alınarak belirlendi. Mikroskobik kesitler üzerinde hesaplanan gerçek ölçümler (altın standart) ile dijital görüntüler üzerinde yapılan ölçümlerin karşılaştırması aşamasında Bland-Altman yönteminden yararlanıldı. Gözlemciler arası uyum grup içi korelasyon katsayısı kullanılarak saptandı. Bulgular: CBCT sisteminde aksiyel ve sagittal kesitlerde gerçekleştirilen ölçümlerde, altın standarttan maksimum sapma sırasıyla 2 mm [%95 güven aralığı (GA) 2,60-0,60] ve 1,5 mm (%95 GA 0,30-2,30) iken, LCBCT sistemi için bu değer 0,66 mm (%95 GA 0,53-2,22) ve 0,37 mm (%95 GA 0,50-2,25) olarak bulundu. CBCT sisteminin aksiyel ve sagittal kesitlerine ait gözlemciler arası uyum değeri sırasıyla 0,487 ve 0,700 iken, LCBCT sistemi için bu değer 0,979 ve 0,985 olarak saptandı. SPP görüntüleme sistemi için ise bu değer 0,979 idi. Sonuç: Accu-I-Tomo LCBCT sistemi ile elde edilen görüntüler üzerinde gerçekleştirilen çürük derinliği ölçümleri; Newtom CBCT ve Digora SPP sistemlerine kıyasla daha doğru sonuçlar vermiştir. Gözlemciler arası uyum, LCBCT sistemi için CBCT ve SPP sistemlerine kıyasla daha yüksektir.

Arayüz Çürük Derinliği Ölçüm Doğruluğunda Farklı Dental Volümetrik Tomografi ve Fosfor Plak Sistemlerinin Karşılaştırılması

Objective: The aim of this study was to compare the accuracy of NewTom 9000 [cone beam computerized tomography (CBCT)], Accu-I-Tomo [limited CBTC (LCBCT)] and Digora Optime [storage phosphor plate (SPP)] imaging systems in assessing the depths of defects with different shapes and sizes on the proximal surfaces of teeth.Materials­and­Methods:­Thirty out of 50 incisive teeth with sound proximal surfaces were divided into three equal groups. Mechanical defects of different sizes and depths were created on their proximal surfaces and teeth were placed in acrylic blocks with approximal contacts. Radiographs of the blocks were obtained with CBCT, LCBCT and SPP systems. The depth measurements of 60 artificial defects were performed by 3 radiologists in the digital radiographs. The gold standard (true measure) was defined as the mean of the 2 observers' measurements on the microscopic sections. Results from imaging systems and true depths were compared using Bland-Altman plots. The agreement was determined with intra-class correlation coefficient.Results: Maximum deviation from the true length in axial and sagittal slices of CBCT system was 2 mm [95% confidence interval (CI) 2.60-0.60] and 1.5 mm (95% CI 0.302.30) respectively while the deviation of LCBCT was 0.66 mm (95% CI 0.53-2.22) and 0.37 mm (95% CI 0.50-2.25). The deviation from truth for SPP was 0.66 mm (95% CI 0.33-2.25). Correlation among observers was 0.487 and 0.700 respectively, for CBCT axial and sagittal slices; while it was 0.979 and 0.985 for LCBCT and 0.979 for SPP.Conclusion: Images obtained with the Accu-I-Tomo LCBCT system were more accurate than Newtom CBCT and Digora SPP system for measurement of caries lesion depth. Correlation among observers was higher for LCBCT and SPP systems compared with CBCT system.

___

  • 1. Chadwick BL, Dummer PM, van der Stelt PF. The effect of alterations in horizontal X-ray beam angulation and buccolingual cavity width on the radiographic depth of approximal cavities. J Oral Rehabil 1999; 26: 292-301.
  • 2. Young DA, Featherstone JD. Digital imaging fiber-optic transillumination, F-speed radiographic film and depth of approximal lesions. J Am Dent Assoc 2005; 136: 1682-7.
  • 3. Wenzel A. Digital radiography and caries diagnosis. Dentomaxillofac Radiol 1998; 27: 3-11.
  • 4. Jacobsen JH, Hansen B, Wenzel A, Hintze H. Relationship between histological and radiographic caries lesion depth measured in images from four digital radiography systems. Caries Res 2004; 38: 34-8.
  • 5. Pitts NB, Renson CE. Image analysis of bitewing radiographs: a histologically validated comparison with visual assessments of radiolucency depth in enamel. Br Dent J 1986; 160: 205-9.
  • 6. Versteeg KH, Sanderink GC, Velders XL, van Ginkel FC, van der Stelt PF. In vivo study of approximal caries depth on storage phosphor plate images compared with dental x-ray film. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1997; 84: 210-3.
  • 7. Soğur E, Gröndahl HG, Baksı BG, Mert A. Does a combination of two radiographs increase accuracy in detecting acid-induced periapical lesions and does it approach the accuracy of conebeam computed tomography scanning? J Endodo 2012; 38: 131- 6.
  • 8. Koob A, Sanden E, Hassfeld S, Staehle HJ, Eickholz P. Effect of digital filtering on the measurement of the depth of proximal caries under different exposure conditions. Am J Dent 2004; 17: 388-93.
  • 9. Svanaes DB, Moystad A, Larheim TA. Approximal caries depth assessment with storage phosphor versus film radiography. Evaluation of the caries-specific Oslo enhancement procedure. Caries Res 2000; 34: 448-53.
  • 10. White SC, Yoon DC. Comparative performance of digital and conventional images for detecting proximal surface caries. Dentomaxillofac Radiol 1997; 26: 32-8.
  • 11. Haiter-Neto F, Wenzel A, Gotfredsen E. Diagnostic accuracy of cone beam computed tomography scans compared with intraoral image modalities for detection of caries lesions. Dentomaxillofac Radiol 2008; 37: 18-22.
  • 12. Young SM, Lee JT, Hodges RJ, Chang TL, Elashoff DA, White SC. A comparative study of high-resolution cone beam computed tomography and charge-coupled device sensors for detecting caries. Dentomaxillofac Radiol 2009; 38: 445-51.
  • 13. Charuakkra A, Prapayasatok S, Janhom A, Pongsiriwet S, Verochana K, Mahasantipiya P. Diagnostic performance of conebeam computed tomography on detection of mechanicallycreated artificial secondary caries. Imaging Sci Dent 2011; 41: 143-50.
  • 14. Kayipmaz S, Sezgin ÖS, Saricaoğlu ST, Çan G. An in vitro comparison of diagnostic abilities of conventional radiography, storage phosphor, and cone beam computed tomography to determine occlusal and approximal caries. Eur J Radiol 2011; 80: 478-82.
  • 15. Zhang ZL, Qu XM, Li G, Zhang ZY, Ma XC. The detection accuracies for proximal caries by cone-beam computerized tomography, film, and phosphor plates. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011; 11: 103-8.
  • 16. Kamburoğlu K, Murat S, Yüksel SP, Cebeci AR, Paksoy CS. Occlusal caries detection by using a cone-beam CT with different voxel resolutions and a digital intraoral sensor. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109: 63-9.
  • 17. Akdeniz BG, Gröndahl HG, Magnusson B. Accuracy of proximal caries depth measurements: comparison between limited cone beam computed tomography, storage phosphor and film radiography. Caries Res 2006; 40: 202-7.
  • 18. Kamburoğlu K, Kurt H, Kolsuz E, Öztaş B, Tatar I, Çelik HH. Occlusal caries depth measurements obtained by five different imaging modalities. J Digit Imaging 2011; 24: 804-13.
  • 19. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 8: 307-10.
  • 20. Cotton TP, Geisler TM, Holden DT, Schwartz SA, Schindler WG. Endodontic applications of cone-beam volumetric tomography. J Endod 2007; 33:1121-32.
  • 21. Grimard BA, Hoidal MJ, Mills MP, Mellonig JT, Nummikoski PV, Mealey BL. Comparison of clinical, periapical radiograph, and cone-beam volume tomography measurement techniques for assessing bone level changes following regenerative periodontal therapy. J Periodontol 2009; 80: 48-55.
  • 22. Dawood A, Brown J, Sauret-Jackson V, Purkayastha S. Optimization of cone beam CT exposure for pre-surgical evaluation of the implant site. Dentomaxillofac Radiol 2012; 41: 70-4.
  • 23. Cone beam CT for dental and maxillofacial radiology:Evidencebased guidelines. A report prepared by the SEDENTEXCT project. Available from URL: http://www.sedentexct. eu/files/radiation_ protection_172.pdf.
  • 24. Qu X, Li G, Zhang Z, Ma X. Detection accuracy of in vitro approximal caries by cone beam computed tomography images. Eur J Radiol 2010; 79: 24-7.
  • 25. Senel B, Kamburoglu K, Uçok O, Yüksel SP, Ozen T, Avsever H. Diagnostic accuracy of different imaging modalities in detection of proximal caries. Dentomaxillofac Radiol 2010; 39: 501-11.
  • 26. Patel S, Dawood A, Ford TP, Whaites E. The potential applications of cone beam computed tomography in the management of endodontic problems. Int Endod J 2007; 40: 818-30.
  • 27. Hatcher DC. Operational principles for cone-beam computed tomography. J Am Dent Assoc 2010; 141(Suppl 3): 3-6.
  • 28. Scarfe WC, Farman AG, Sukovic P. Clinical applications of conebeam computed tomography in dental practice. J Can Dent Assoc 2006; 72: 75-80.
  • 29. Watanabe H, Honda E, Tetsumura A, Kurabayashi T. A comparative study for spatial resolution and subjective image characteristics of a multi-slice CT and a cone-beam CT for dental use. Eur J Radiol 2011; 77: 397-402.
  • 30. Lofthag-Hansen S, Thilander-Klang A, Gröndahl K. Evaluation of subjective image quality in relation to diagnostic task for cone beam computed tomography with different fields of view. Eur J Radiol 2011; 80: 483-8.
  • 31. Pauwels R, Beinsberger J, Collaert B, Theodorakou C, Rogers J, Walker A, et al. Effective dose range for dental cone beam computed tomography scanners. Eur J Radiol 2012; 81: 267-71.
  • 32. Krzyzostaniak J, Kulczyk T, Czarnecka B, Surdacka A. A comparative study of the diagnostic accuracy of cone beam computed tomography and intraoral radiographic modalities for the detection of noncavitated caries. Clin Oral Investig 2015; 19: 667-72.
  • 33. Brüllmann D, Schulze RK. Spatial resolution in CBCT machines for dental/maxillofacial applications-what do we know today? Dentomaxillofac Radiol 2015; 44: 20140204.