İki-Boyutlu Tek-tabaka Karbon Nitrürlerin Fononik Kararlılık Analizi

Bu çalışmada, tek tabakalı C6 N6 and C6 N8 karbon nitrürlerin dinamik kararlılıklarını ve elektronik özelliklerini inceledik. Literatürde bir çok kez çalışılmış olan düzlemsel C6 N8 yerine, bükülmüş tek-tabakalı C6 N8’in dinamik olarak kararlı olduğunu bulduk. Düzlemsel C6 N8, negatif optik fonon modlarına sahipken, yapıda uygun bir şekilde oluşturulan bükülme bu imajinerliklerin ortadan kalkmasını ve sistemin dinamik olarak kararlı olmasını sağlamaktadır. Literatürde, tek tabakalı C6 N6 ’nın düzlemsel formunun kararlı olduğu bulunmuştur. Bu çalışmada, C6 N6’daki bükülmenin, düzlem-dışı enine akustik modun (ZA) ve optik dalın yumuşak modunun kararlılıklarını bozduğunu ortaya çıkardık. Hem bükülmüş C6 N8 hem de düzlemsel C6 N6, görünür bölge icinde olan sırasıyla 1.82 eV ve 1.58 eV dogrudan bant aralığına sahiptir. Bizim sonuçlarımız, spektrumun görünür bölge aralığında çalışan optik cihazların üretiminde faydalı olabilir.

Phononic Stability Analysis of Two-Dimensional Carbon Nitride Monolayers

In this study we examined the dynamical stability and electronic properties of carbon nitrides monolayers as C6N6 and C6 N8. We found thatbuckled form of C6 N8 monolayer is dynamically stable instead of planar C6N8, which has been studied many times in literature. While planarC6N8 has negative optical phonon modes, properly created buckling in the structure can make these imaginarities disappear and make the system dynamically stable. In the literature, the planar form of C6N6 monolayer is predicted to be stable. In this work, we find out thatbuckling in the C6 N6 destabilizes the out-of-plane transverse acoustic mode (ZA) and the soft mode of the optical branch. Both buckled C6 N8 and planar C6 N6 have direct band gap of 1.82 eV and 1.58 eV, respectively, which fall in the visible region. Our outcomes may be usefulin fabricating optical devices that operate in the visible range of the spectrum.

___

  • Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J. M., and Antonietti, M. (2009). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature materials, 8(1), 76.
  • Kroke, E., and Schwarz, M. (2004). Novel group 14 nitrides. Coordination Chemistry Reviews, 248(5-6), 493-532.
  • Fang, L., Ohfuji, H., Shinmei, T., and Irifune, T. (2011). Experimental study on the stability of graphitic C3N4 under high pressure and high temperature. Diamond and Related Materials, 20(5-6), 819-825.
  • Zou, X. X., Li, G. D., Wang, Y. N., Zhao, J., Yan, C., Guo, M. Y., and Chen, J. S. (2011). Direct conversion of urea into graphitic carbon nitride over mesoporous TiO 2 spheres under mild condition. Chemical Communications, 47(3), 1066- 1068.
  • Jürgens, B., Irran, E., Senker, J., Kroll, P., Müller, H., and Schnick, W. (2003). Melem (2, 5, 8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: Synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies. Journal of the American Chemical Society, 125(34), 10288-10300.
  • Pan, H., Zhang, Y. W., Shenoy, V. B., and Gao, H. (2011). Ab initio study on a novel photocatalyst: functionalized graphitic carbon nitride nanotube. Acs Catalysis, 1(2), 99-104.
  • Ma, X., Lv, Y., Xu, J., Liu, Y., Zhang, R., and Zhu, Y. (2012). A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements: a first-principles study. The Journal of Physical Chemistry C, 116(44), 23485-23493.
  • Li, F., Qu, Y., and Zhao, M. (2015). Efficient helium separation of graphitic carbon nitride membrane. Carbon, 95, 51- 57.
  • Molina, B., and Sansores, L. E. (1999). Electronic structure of six phases of C3 N4 : a theoretical approach. Modern physics letters B, 13(06n07), 193-201.
  • He, B. L., Shen, J. S., and Tian, Z. X. (2016). Iron-embedded C 2 N monolayer: a promising low-cost and high-activity single-atom catalyst for CO oxidation. Physical Chemistry Chemical Physics, 18(35), 24261-24269.
  • Tang, X., Hao, J., and Li, Y. (2015). A first-principles study of orthorhombic CN as a potential superhard material. Physical Chemistry Chemical Physics, 17(41), 27821-27825.
  • Stavrou, E., Lobanov, S., Dong, H., Oganov, A. R., Prakapenka, V. B., Konôpková, Z., & Goncharov, A. F. (2016). Synthesis of ultra-incompressible sp3-hybridized carbon nitride with 1: 1 stoichiometry. Chemistry of Materials, 28(19), 6925-6933.
  • Abdullahi, Y. Z., Leong, Y. T., Halim, M. M., Hashim, M. R., Leng, L. T., and Uebayashi, K. (2017). Adsorption of atoms and molecules on s-triazine sheet with embedded manganese atom: First-principles calculations. Physics Letters A, 381(43), 3664-3674.
  • Abdullahi, Y. Z., Yoon, T. L., Halim, M. M., Hashim, M. R., and Lim, T. L. (2017). Effects of atoms and molecules adsorption on electronic and magnetic properties of s-triazine with embedded Fe atom: DFT investigations. Philosophical Magazine, 1-16.
  • Abdullahi, Y. Z., Yoon, T. L., Halim, M. M., Hashim, M. R., and Lim, T. L. (2017). Theoretical studies on mechanical and electronic properties of s-triazine sheet. Philosophical Magazine, 97(24), 2077-2088.
  • Abdullahi, Y. Z., Yoon, T. L., Halim, M. M., Hashim, M. R., and Lim, T. L. (2018). First-principles investigation of graphitic carbon nitride monolayer with embedded Fe atom. Surface Science, 667, 112-120.
  • Kroke, E., Schwarz, M., Horath-Bordon, E., Kroll, P., Noll, B., and Norman, A. D. (2002). Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3 N4 structures. New Journal of Chemistry, 26(5), 508-512.
  • Wang, A., Zhang, X., & Zhao, M. (2014). Topological insulator states in a honeycomb lattice of s-triazines. Nanoscale, 6(19), 11157-11162.
  • Li, J., Cao, C., Hao, J., Qiu, H., Xu, Y., and Zhu, H. (2006). Self-assembled one-dimensional carbon nitride architectures. Diamond and related materials, 15(10), 1593-1600.
  • Thomas, A., Fischer, A., Goettmann, F., Antonietti, M., Müller, J. O., Schlögl, R., and Carlsson, J. M. (2008). Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry, 18(41), 4893-4908.
  • Ma, Z., Zhao, X., Tang, Q., and Zhou, Z. (2014). Computational prediction of experimentally possible g-C3N3 monolayer as hydrogen purification membrane. International Journal of Hydrogen Energy, 39(10), 5037-5042.
  • Deifallah, M., McMillan, P. F., and Cora, F. (2008). Electronic and structural properties of two-dimensional carbon nitride graphenes. The Journal of Physical Chemistry C, 112(14), 5447-5453.
  • Ji, Y., Dong, H., Lin, H., Zhang, L., Hou, T., and Li, Y. (2016). Heptazine-based graphitic carbon nitride as an effective hydrogen purification membrane. RSC Advances, 6(57), 52377- 52383.
  • Perdew, J. P., Burke, K., and Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865.
  • Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., and Cavazzoni, C., et. al., (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39), 395502.
  • Monkhorst, H. J., and Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188.
  • Broyden, C. G. (1970). The convergence of a class of double-rank minimization algorithms 1. General considerations. IMA Journal of Applied Mathematics, 6(1), 76-90.
  • Hummer, K., Harl, J., and Kresse, G. (2009). Heyd-Scuseria-Ernzerhof hybrid functional for calculating the lattice dynamics of semiconductors. Physical Review B, 80(11), 115205.
  • Wu, H-Z., Liu, L-M., and Zhao, S-J, The effect of water on the structural, electronic and photocatalytic properties of graphitic carbon nitride, Phys. Chem. Chem. Phys., 2014, 16, 3299.