Doğalgaz Yakıtlı HCCI Bir Motorda Hidrojen İlavesinin Yanma Karakteristikleri Üzerindeki Etkilerinin Nümerik Olarak İncelenmesi

Homojen dolgulu sıkıştırma ile ateşlemeli motorlar konvansiyonel içten yanmalı motorlarla karşılaştırıldığında yüksek termik verim, NOx ve is emisyonlarındaki eş zamanlı azalma avantajlarından dolayı yeni bir araştırma alanı olmuştur. HCCI motorlarda kendi kendine tutuşma zamanlaması üzerinde direkt kontrol olmadığından çalışma ve yük aralığı sınırlı kalmaktadır. Yanma işlemini etkileyen en önemli parametrelerden bazıları karışımın kompozisyonu ve yakıtın kimyasal özellikleridir. Bu çalışmada sıkıştırma oranı 10:1 olan doğal emişli, tek silindirli, dört zamanlı, dört supaplı, doğal gaz ile çalışan bir HCCI motorunda hidrojen ilavesinin yanma işlemi üzerindeki etkileri açık kaynak kodlu KIVA-4 yazılımı ile nümerik olarak incelenmiştir. Bu amaçla doğalgaz yakıtının içerisine %0, %10, %20, %30,%40, oranlarında hidrojen ilave edilerek beş farklı yakıt karışımı hazırlanmıştır. Bununla birlikte yanma analizi üç farklı hava fazlalık katsayısı değerinde (λ=1.5, λ=2, λ=2.5) gerçekleştirilmiştir. Sonuçta, hidrojen ilavesinin kendi kendine tutuşma zamanlaması, toplam yanma süresi, ısı dağılımı, silindir içi basınç ve silindir içi sıcaklık üzerindeki etkileri araştırılmıştır.

A Numerical Investigation of the Effects of Hydrogen Addition on Combustion Characteristics in a HCCI Engine Fueled With Natural Gas

Homogenous Charge Compression Ignition (HCCI) engines have become a new field of research because of high thermal efficiency compared to the internal combustion engines and reduction of NOx and particular matter emissions simultaneously. Operating and load range were limited as there is no direct control on the controlling auto-ignition timing and combustion process in the HCCI engines. Some of the most important parameters affecting the combustion process are the mixture composition and chemical properties of the fuel. In this study, the effects of hydrogen addition on combustion process were investigated numerically using open coded software KIVA-4 in a single cylinder, four-stroke, four-valve, naturally aspirated and compression ratio of 10:1 HCCI engine fuelled with natural gas. For this purpose, five different fuel mixtures were prepared by addition hydrogen into the natural gas at different rates 0% - 10% - 20% - 30% and 40%. In addition, combustion analysis was performed with three excessive air coefficient (λ=1.5, λ=2, λ=2.5). As a result, the effects of hydrogen addition were investigated on the self-ignition timing point, total combustion duration, heat release rate, in-cylinder pressure, cylinder temperature.

___

  • 1. Liu, C., Karim, GA., 2008, “A simulation of the combustion of hydrogen in HCCI engines using a 3D model with detailed chemical kinetics ”, International Journal of Hydrogen Energy, 33:3863–75.
  • 2. Hairuddin, A. A.,Yusaf, T., Wandel, A.P., 2014, “A review of hydrogen and natural gas addition in diesel HCCI engines”, Renewable and Sustainable Energy Reviews, 32, 739–761.
  • 3. Zhao, H., 2007, “HCCI and CAI Engines for the Automotive Industry”, Woodhead Publishing Limited, England, 78–118.
  • 4. Yılmaz, E., Solmaz, H., Polat, S., Uyumaz, A., Sahin, F., Salman, MS., 2014, “Preparation of diesel emulsion using auxiliary emulsifier mono ethylene glycol and utilization in a turbocharged diesel engine”, Energy Conversion and Management, 86: 973–80.
  • 5. Çınar, C., Uyumaz, A., Solmaz, H., Sahin, F., Polat, S., Yılmaz, E., 2015, “Effects of intake air temperature on combustion, performance and emission characteristics of a HCCI engine fueled with the blends of 20% n-heptane and 80% isooctane fuels”, Fuel Processing Technology, 130:275–81.
  • 6. Kuo, KK., 2005, “Principles of combustion”, New Jersey: John Wiley and Sons.
  • 7. Miller, JA, Bowman, CT., 1989, “Mechanism and modeling of nitrogen chemistry in combustion”, Progress in Energy and Combustion Science, 15: 287–338.
  • 8. Guo, H., Neill, WS., 2013, “The effect of hydrogen addition on combustion and emission characteristics of an n-heptane fuelled HCCI engine”, International Journal of Hydrogen Energy, 38:11429-37.
  • 9. Park, J., Cha, H., Song, S., Chun, KM., 2011, “A numerical study of a methane-fueled gas engine generator with addition of hydrogen using cycle simulation and DOE method”, International Journal of Hydrogen Energy, 36: 5153-62.
  • 10. Yao, M., Zheng, Z., Liu, H., 2009, “Progress and recent trends in homogeneous charge ompression ignition (HCCI) engines”, Progress in Energy and Combustion Science,35:398-437.
  • 11. Stone, R., 2000, “Introduction to internal combustion engines” Second ed. London: Macmillan Press. 12. Çınar, C., Uyumaz, A., Solmaz, H.,Topgul, T., 2015, “Effects of valve lift on the combustion and emissions of a HCCI gasoline engine”, Energy Conversion and Management, 94, 159–168.
  • 13. Blarigan, P.V., Keller, J O., 1998, “A hydrogen fuelled internal combustion engine designed for single speed/power operation”, International journal of Hydrogen Energy, 23(7), 603-609.
  • 14. Bauer, C.G., Forest, T.W., 2001, “Effect of hydrogen addition on the performance of methane-fueled vehicles. Part I: effect on S.I. engine performance”, International Journal of Hydrogen Energy, 26(1), 55-70.
  • 15. Wong, Y.K., Karim, G.A., 2000, “An analytical examination of the effects of hydrogen addition on cyclic variations in homogeneously charged compression–ignition engines”, International Journal of Hydrogen Energy, 25(12), 1217-1224.
  • 16. Polat, S., Uyumaz, A., Solmaz, H., Yilmaz, E., Topgül, T., Yücesu, H.S., 2016, “A numerical study on the effects of EGR and spark timing to combustion characteristics and NOx emission of a GDI engine”, International Journal of Green Energy, 13(1), 63-70.
  • 17. Jafarmadar, S., Nemati, P., Khodaie, R., 2015, “Multidimensional modeling of the effect of Exhaust Gas Recirculation (EGR) on exergy terms in an HCCI engine fueled with a mixture of natural gas and diesel”, International Journal of Green Energy, 105 498–508.
  • 18. Guo, H., Hosseini, V., Neill, W.S., Chippior, W.L., Dumitrescu, C.E., 2011, “An experimental study on the effect of hydrogen enrichment on diesel fueled HCCI combustion”, International Journal of Green Energy, 36, 13820-13830.
  • 19. Ibrahim, M.M., Ramesh, A., 2014, “Investigations on the effects of intake temperature and charge dilution in a hydrogen fueled HCCI engine”, International Journal of Green Energy, 39, 14097- 14108.
  • 20. Guo, H., Neill, W.S., 2013, “The effect of hydrogen addition on combustion andemission characteristics of an n-heptane fuelled HCCI engine”, International Journal of Green Energy, 38, 11429-11437.
  • 21. Song, H., Song, S., 2015, baskıda, “Predicting performance of a methane-fueled HCCI engine with hydrogen addition considering knock resistance”, International Journal of Green Energy.
  • 22. Kong, SC., Reitz, RD., 2002, “Use of detailed chemical kinetics to study HCCI engine combustion with consideration of turbulent mixing effects”, Journal of Engineering For Gas Turbines and Power,124:702–7.
  • 23. Papagiannakis, RG., Hountalas, DT., 2004, “Combustion and exhaust emission char- acteristics of a dual fuel compression ignition engine operated with pilot diesel fuel and natural gas”, Energy Conversion and Management, 45:2971–87.
  • 24. Jonathan, P., 2006, “Responses to questions on the design elements of a mandatory market-based greenhouse gas regulatory system”, U.S Senate Committee on Energy and Natural Resources, Washington.
  • 25. Saravanan, N., Nagarajan, G., 2010, “An experimental investigation on hydrogen fuel injection in intake port and manifold with different EGR rates”, International Journal of Energy and Environment,1:221–48.
  • 26. Saravanan, N., Nagarajan, G., Sanjay, G., Dhanasekaran, C., Kalaiselvan, KM., 2008, “Combustion analysis on a DI diesel engine with hydrogen in dual fuel mode”, Fuel, 87:3591–9.
  • 27. Verhelst, S., Wallner, T., 2009, “Hydrogen-fueled internal combustion engines”, Progress in Energy Combustion and Science, 35:490–527.