Rezidüel gravite alanı verilerinden 2 boyutlu doğrusal ve doğrusal olmayan ters çözüm modelini kullanarak bir tuz domunun simülasyonu

Gravite alan verilerinin ters çözümünde, genellikle belirsizlik problemleri ile ilgileniriz ve gerçekçiçözümler elde etmek için, ters çözüm algoritmasına derinlik ölçüm fonksiyonunu tanıtabiliriz. Buçalışmada, doğrusal ters çözüm yöntemi, gravite anomalisine neden olan bir kütlenin yer altındakiyoğunluk dağılımını tespit etmek amacıyla kullanılmıştır. Bu yöntemin geçerliliği ve doğruluğu,gürültüsüz ve gürültülü verileri kullanılarak, farklı modeller arasından iki sentetik gravite anomalisiüzerinde test edilmiştir. Ayrıca, çalışmada İran’ın kuzeybatısında yer alan bir tuz domundan eldeedilen 2 boyutlu gravite anomalisi de dönüştürülmüştür. Çalışma bölgesinde yer alan tuz domlarıpotas bakımından zengin kaynaklardır. Ters çözüm işlemi yapılan yapı üstten alta doğru ortalama 27metre ile 65 metre arasında bir derinliğe sahiptir. Aynı zamanda, karşılaştırma amacıyla bir doğrusalolmayan ters ölçüm modeli de kullanarak tuz domu simüle edilmiş ve çoğunlukla benzer sonuçlarelde edilmiştir.

Simulation of a salt dome using 2D linear and nonlinear inverse modeling of residual gravity field data

In gravity field inversion we usually dealing with underdetermined problems and for obtaining realistic solutions can introduce a depth-weighting function to the inversion algorithm. We employ a linear inversion method for determining the underground density distribution of the gravity causative mass. The validation and accuracy of method is tested on two synthetic gravity anomaly from different models, while the data are noise- free and corrupted with noise. In this paper, We also invert the 2D gravity anomaly produced by a salt dome from the northwest of Iran. The salt domes in the region under investigation are a rich source of Potash. The inverted structure demonstrate on average a depth to top and bottom of 27 m and 65 m, respectively. For comparison, we also have simulated the salt dome using the nonlinear inverse modeling. The results are mostly similar.

___

  • Abdelrahman, E.M. 1990. Discussion on “A least-squares approach to depth determination from gravity data” by O. P. Gupta. Geophysics, 55, 376-378.
  • Abdelrahman, E.M., El-Araby, T.M. 1993. A least-squares minimization approach to depth determination from moving average residual gravity anomalies. Geophysics, 58,1779–1784.
  • Abdelrahman, E.M., El-Araby, H.M. 1993. Shape and depth solutions from gravity using correlation factors between successive least-squares residuals. Geophysics, 59, 1785–1791.
  • Abdelrahman, E.M., Bayoumi, A.I., Abdelhady, Y.E., Gobashy, M.M., El-Araby, H.M. 1989. Gravity interpretation using correlation factors between successive least-squares residual anomalies. Geophysics, 54, 1614-1621.
  • Abdelrahman, E.M., Bayoumi, A.I., El-Araby, H.M. 1991. A least-squares minimization approach to invert gravity data. Geophysics, 56, 115-l 18.
  • Al-Garni, M.A. 2013. Inversion of residual gravity anomalies using neural network. Arab J Geosci, 6,1509–1516.
  • Asfahani, J., Tlas, M. 2008. An automatic method of direct interpretation of residual gravity anomaly profiles due to spheres and cylinders. Pure and Applied Geophysics, 165/5, 981–994.
  • Biswas, A. 2015. Interpretation of residual gravity anomaly caused by a simple shaped body using very fast simulated annealing global optimization. Geoscience Frontiers, 6/6, 875–893.
  • Biswas, A. 2016. Interpretation of gravity and magnetic anomaly over thin sheet-type structure using very fast simulated annealing global optimization technique. Modeling Earth Systems and Environment, 2/1, 30.
  • Biswas, A. 2018. Inversion of source parameters from magnetic anomalies for mineral /ore deposits exploration using global optimization technique and analysis of uncertainty. Natural Resources Research, 27/1, 778–107.
  • Biswas, A., Sharma, S. P. 2016. Integrated geophysical studies to elicit the structure associated with Uranium mineralization around South Purulia Shear Zone, India: A Review. Ore Geology Reviews, 72, 1307–1326.
  • Biswas, A., Mandal, A., Sharma, S. P., Mohanty, W. K. 2014a. Delineation of subsurface structure using self-potential, gravity and resistivity surveys from South Purulia Shear Zone, India: Implication to uranium mineralization. Interpretation, 2/2, T103–T110.
  • Biswas, A., Mandal, A., Sharma, S. P., Mohanty, W. K. 2014b. Integrating apparent conductance in resistivity sounding to constrain 2D Gravity modeling for subsurface structure associated with uranium mineralization across South Purulia Shear Zone. International Journal of Geophysics, Article ID 691521, 1–8.
  • Biswas, A., Parija, M. P., Kumar, S. 2017. Global nonlinear optimization for the interpretation of source parameters from total gradient of gravity and magnetic anomalies caused by thin dyke. Annals of Geophysics, 60/2, G0218, 1–17.
  • Bosch, M., McGaughey, J. 2001. Joint inversion of gravity and magnetic data under lithological constraints. The Leading Edge, 20, 877–881.
  • Bosch, M., Meza, R., Jiménez, R., Hönig, A. 2006. Joint gravity and magnetic inversion in 3D using Monte Carlo methods: Geophysics, 71/4, G153–G156.
  • Bowin C., Scheer E., Smith W. 1986. Depth estimates from ratios of gravity, geoid, and gravity gradient anomalies. Geophysics, 51, 123-136.
  • Chakravarthi, V., Sundararajan, N. 2004. Ridge regression algorithm for gravity inversion of fault structures with variable density. Geophysics, 69, 1394– 1404.
  • Eshaghzadeh, A., Kalantary, R.A. 2015. Anticlinal Structure Modeling with Feed Forward Neural Networks for Residual Gravity Anomaly Profile, 8th congress of the Balkan Geophysical Society, DOI: 10.3997/2214-4609.201414210.
  • Eshaghzadeh, A., Hajian, A. 2018. 2-D inverse modeling of residual gravity anomalies from Simple geometric shapes using Modular Feed-forward Neural Network, Annals of Geophysics. 61,1, SE115.
  • Essa, K.S. 2007. A simple formula for shape and depth determination from residual gravity anomalies. Acta Geophysica, 55/2, 182–190.
  • Farquharson, C. G., Ash, M. R., Miller, H. G. 2008. Geologically constrained gravity inversion for the Voisey’s Bay ovoid deposit. The Leading Edge, 27, 64–69.
  • Gallardo, L. A., Meju, M. 2003. Characterization of heterogeneous near-surface materials by joint 2D inversion of DC and seismic data: Geophysical Research Letters, 30, L1658.
  • Ganguli, S.S., Dimri, V. P. 2013. Interpretation of gravity data using eigen image with Indian case study: A SVD approach. Journal of Applied Geophysics, 95, 23-35.
  • Ganguli, S.S., Lashin, A.A., Al Arifi, N.S., Dimri, V. P. 2015. Design of Gravity energy filter to enhance signal-to-noise ratio of gravity measurements. Jour. of Ind. Geophy. Union, 19/3, 333-338.
  • Gupta, O.P. 1983. A least-squares approach to depth determination from gravity data. Geophysics, 48, 357-360.
  • Hammer, S. 1977. Graticule spacing versus depth discrimination in gravity interpretation. Geophysics, 42, 60-65.
  • Heincke, B., Jegen, M., Moorkamp, M., Chen, J., Hobbs, R.W. 2010. Adaptive coupling strategy for simultaneous joint inversions that use petrophysical information as constraints: 80th Annual International Meeting, SEG, Expanded Abstracts, 29, 2805–2809.
  • Ialongo, S., Fedi, M., Florio, G. 2014. Invariant models in the inversion of gravity and magnetic fields and their derivatives. Journal of Applied Geophysics, 110, 51-62.
  • Kamm, J., Lundin, I.A., Bastani, M., Sadeghi, M., Pedersen, L.B. 2015. Joint inversion of gravity, magnetic, and petrophysical data — A case study from a gabbro intrusion in Boden, Sweden. Geophysics, 80/5, B131–B152.
  • Last, B. J., Kubik, K. 1983. Compact gravity inversion, Geophysics,48, 713-721.
  • Lelièvre, P.G., Farquharson, C.G., Hurich, C.A. 2012. Joint inversion of seismic traveltimes and gravity data on unstructured grids with application to mineral exploration. Geophysics, 77, K1–K15.
  • Li, Y., Oldenburg, D. W. 1998. 3-D inversion of gravity data. Geophysics, 63, 109-119.
  • Lines, L.R., Treitel, S. 1984. A review of least-squares inversion and its application to geophysical problems. Geophys. Prosp, 32, 159-186.
  • Mandal, A., Biswas, A., Mittal, S., Mohanty, W. K., Sharma, S. P. Sengupta, D., Sen, J., Bhatt, A. K. 2013. Geophysical anomalies associated with uranium mineralization from Beldih mine, South Purulia Shear Zone, India. Journal Geological Society of India, 82/6, 601–606.
  • Mandal, A., Mohanty, W. K., Sharma, S. P., Biswas, A., Sen, J., Bhatt, A. K. 2015. Geophysical signatures of uranium mineralization and its subsurface validation at Beldih, Purulia District, West Bengal, India: A case study. Geophysical Prospecting, 63, 713–726.
  • Menke, W. 2012. Geophysical Data Analysis: Discrete inverse theory (MATLAB Edition), Elsevier Inc., New York, 293 s.
  • Mohan, N.L., Anandababu, L., Rao, S. 1986. Gravity interpretation using the Melin transform, Geophysics. 51, 114-122.
  • Odegard, M.E., Berg, J.W. 1965. Gravity interpretation using the Fourier integral. Geophysics, 30, 424- 438.
  • Oldenburg, D. W. 1974. The inversion and interpretation of gravity anomalies. Geophysics, 39/4, 526-536.
  • Osman, O., Muhittin, A.A., Uçan, O.N. 2006. A new approach for residual gravity anomaly profile interpretations: Forced Neural Network (FNN). Ann. Geofis, 49, 6.
  • Osman, O., Muhittin, A.A., Uçan, O.N. 2007. Forward modeling with Forced Neural Networks for gravity anomaly profile. Math. Geol, 39, 593-605.
  • Parker, R. L. 1973. The Rapid Calculation of Potential Anomalies. Geophysical Journal of the Royal Astronomical Society, 31, 447-455.
  • Pilkington, M. 2006. Joint inversion of gravity and magnetic data for twolayer models. Geophysics, 71/3, L35– L42.
  • Salem, A., Ravat, D., Johnson, R., Ushijima, K. 2001. Detection of buried steel drums from magnetic anomaly data using a supervised neural network. J. Environ. Eng. Geophys, 6,115-122.
  • Saxov, S., Nygaard, K.1953. Residual anomalies and depth estimation. Geophysics, 18, 913-928.
  • Shamsipour, P., Marcotte, D., Chouteau, M., Keating, P. 2010. 3D stochastic inversion of gravity data using cokriging and cosimulation. Geophysics 75, I1–I10.
  • Shamsipour, P., Chouteau, M., Marcotte, D. 2011. 3D stochastic inversion of magnetic data. Journal of Applied Geophysics 73, 336–347.
  • Shamsipour, P., Marcotte, D., Chouteau, M. 2012. 3D stochastic joint inversion of gravity and magnetic data. Journal of Applied Geophysics 79, 27–37.
  • Sharma, B., Geldart, L.P. 1968. Analysis of gravity anomalies of two-dimensional faults using Fourier transforms. Geophys. Prosp, 77-93.
  • Shaw, R. K., Agarwal, N.P. 1990. The application of Walsh transforms to interpret gravity anomalies due to some simple geometrically shaped causative sources: A feasibility study. Geophysics, 55, 843- 850.
  • Singh, A., Biswas, A. 2016. Application of global particle swarm optimization for inversion of residual gravity anomalies over geological bodies with idealized geometries. Natural Resources Research, 25/3, 297–314.
  • Skeels, D. C. 1947. Ambiguity in gravity interpretation, Geophysics, 12, 43-56.
  • Srivastava, R.P., Vedanti, N., Dimri, V.P. 2007. Optimal Design of a Gravity Survey Network and its Application to Delineate the Jabera-Damoh Structure in the Vindhyan Basin, Central India. Pure & App. Geophy, 164/10, 2009-2022.
  • Tschirhart, V., Morris, W. A., Jefferson, C.W., Keating, P., White, J. C., Calhoun, L. 2013. 3D geophysical inversions of the north-east Amer Belt and their relationship to the geologic structure. Geophysical Prospecting, 61, 547–560.
  • Tschirhart, V., Jefferson, C.W., Morris, W.A. 2017. Basement geology beneath the northeast Thelon Basin, Nunavut: insights from integrating new gravity, magnetic and geological data. Geophysical Prospecting, 65, 617-636.
  • Tsuboi, C. 1983. Gravity, 1st edn. George Allen ve Unwin Ltd, London, 254 pp.
  • Williams, N. C. 2008. Geologically-constrained UBC-GIF gravity and magnetic inversions with examples from the Agnew-Wiluna Greenstone Belt, Western Australia: Ph.D. thesis, University of British Colombia.
  • Zeyen, H., Pous, H. 1993. 3-D joint inversion of magnetic and gravimetric data with a priori information. Geophysical Journal International, 112, 244–256.
Maden Tetkik ve Arama Dergisi-Cover
  • ISSN: 0026-4563
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1950
  • Yayıncı: Cahit DÖNMEZ
Sayıdaki Diğer Makaleler

Oligosen yaşlı Datça-Kale-Acı Göl havzasında çökelme ile eş yaşlı tektonizma izleri, Batı Anadolu

Gürol SEYİTOĞLU, Nizamettin KAZANCI, Veysel IŞIK, Gülşen ELMAS

Babaeski-Lüleburgaz-Muratlı-Çorlu bölgesindeki Paleojen-Neojen istiflerinin paleoortamsal özellikleri ve ostrakod incelemesi (Güneydoğu Trakya, Türkiye)

Ümit ŞAFAK

Doğu Karadeniz Bölümü (Ordu, Rize, Artvin-KD Türkiye) jeotermal sahalarının nadir toprak elementleri ve itriyum jeokimyası

Arzu FIRAT ERSOY, Fatma GÜLTEKİN, Esra HATİPOĞLU TEMİZEL

Uçucu kül içeren killi karışımların dış görünüş özellikleri

Fatma DAĞCI, Nazlı İpek KUL GÜL, Niyazi Uğur KOÇKAL

Rezidüel gravite alanı verilerinden 2 boyutlu doğrusal ve doğrusal olmayan ters çözüm modelini kullanarak bir tuz domunun simülasyonu

Soheyl POURREZA, Farnush HAJIZADEH

Doğu Akdeniz’in gaz hidrat potansiyeli

Şükrü MEREY, Sotirios Nik. LONGINOS

Arzev bölgesi (Cezayir’in kuzeybatısı) için bilgi değeri ve frekans oranı kullanılarak heyelan duyarlılık haritalaması

Roukh ZINE EL ABIDINE, Nadji ABDELMANSOUR

Hamit plütonuna (Türkiye) ait kayaç örneklerinde faktör ve kümeleme analizleri ile elementlerin kökeni üzerine istatistiksel yaklaşım

Nurdane İLBEYLİ, Rifat BATTALOĞLU, Fusun YALÇIN, Daniel G. NYAMSARI

Nummulites sireli Deveciler (N. sireli Alan türünün Junior Homonimi) Nummulites ercumenti nom. nov. olarak yeniden isimlendirilmesi

Ali DEVECİLER

Biga Yarımadası’ndaki granitoyitlerin (KB Anadolu, Türkiye) petrolojik ve jeokimyasal özellikleri

Pınar ŞEN, Ümit AYDIN, Öner ÖZMEN, Erdal ŞEN