Laboratuvar Hayvanlarında Sindirim Sistemine Yerleşen Bazı Önemli Viral Enfeksiyonlar

Laboratuvar hayvanları (fareler, sıçanlar ve tavşanlar) çeşitli viral, bakteriyel, parazitik ve fungalajanları organizmalarında barındırabilir. Sıklıkla, bu etkenler organizmada hiçbir belirgin hastalık belirtisine neden olmaz ya da subklinik seyreder. Ancak bu durum hayvanların fizyolojisini değiştirebilir ve konağı deneysel kullanım için uygunsuz hale getirebilir. Günümüzde deney hayvanları merkezlerinde bu patojenlerin sayısı ve yaygınlığı önemli ölçüde azalmış olsa da, birçoğu hala laboratuvar hayvanlarında ortaya çıkmaktadır ve araştırmada istenmeyen değişkenlerin (fizyoloji, biyokimya, immun sistem parametreleri vb.) oluşmasına neden olmaktadır. Laboratuvar veya diğer bir ifadeyle deney hayvanlarının kullanımı dünyada ve ülkemizde gün geçtikçe artmaktadır. Biyolojik, medikal, veteriner hekimliği gibi birçok sağlık alanında deneylerde fare, sıçan, tavşan vb deney hayvanı kullanan araştırmacılar, bu enfeksiyöz ajanların çoğunun araştırma üzerinde sahip olabileceği derin etkilerin farkında olmalıdır. Bu derlemede deney/laboratuvar hayvanlarında görülen ve temel olarak sindirim sistemine yerleşen bazı önemli enterik viral enfeksiyonlar hakkında bilgi verilecektir.

Some Important Viral Infections in the Digestive System of Laboratory Animals

Laboratory animals (mice, rats and rabbits) can harbor a variety of viral, bacterial, parasitic and fungal agents in their organisms. Often, these agents cause no obvious signs of disease in the organism or are subclinical. However, this may alter the animals' physiology and render the host unsuitable for experimental use. Although the number and prevalence of these pathogens have decreased significantly in experimental animal centers today, many of them still occur in laboratory animals and cause undesirable variables (physiology, biochemistry, immune system parameters, etc.) in research. The use of laboratory or, in other words, experimental animals is increasing day by day in the world and in our country. Researchers using experimental animals such as mice, rats, rabbits, etc. in many health fields such as biological, medical, veterinary, etc. should be aware of the profound effects that many of these infectious agents can have on research. In this review, information will be given about some important enteric viral diseases that mainly settle in the digestive system, which are seen in experimental/laboratory animals.

___

  • Barbour AH., Rampling A., Hormaeche CE., 2001. Variation in the infectivity of Listeria monocytogenes isolates following intragastric inoculation of mice. Infect Immun, 69, 4657-4660.
  • Alkan F., Timurkan MÖ., Karayel İ., 2015. Kuzey Kıbrıs Türk Cumhuriyeti’nde İshalli Buzağılarda Grup A Rotavirus Tespiti ve Moleküler Karakterizasyonu. Kafkas Üniv Vet Fak Derg, 21, 127-130.
  • Baker DG., 1998. Natural pathogens of laboratory mice, rats, and rabbits and their effects on research. Clin Microbiol Rev, 11, 231-266.
  • Ball-Goodrich LJ., Johnson E., 1994. Molecular characterization of a newly recognized mouse parvovirus. J Virol, 68, 6476–6486.
  • Barthold SW., Smith AL., Bhatt PN., 1993. Infectivity, disease patterns, and serologic profiles of reovirus serotypes 1, 2, and 3 in infant and weanling mice. Lab Anim Sci, 43, 425–430.
  • Bidawid S., Farber JM., Sattar SA., 2000. Contamination of foods by food handlers: experiments on hepatitis A virus transfer to food andits interruption. Applied and environment microbiol, 66, 2759-2763.
  • Bodon L., Prohaszka L., 1980. Isolation of adenovirus from rabbits with diarrhea. Acta Vet Acad Sci Hung, 28, 247–255.
  • Bruce MG., Campbell I., Xiong Y., Redmond M., Snodgrass DR., 1994. Recognition of rotavirus antigens by mouse L3T4-positive T helper cells. J Gen Virol, 75, 1859–1866.
  • Burns JW., Krishnaney AA., Vo PT., Rouse RV., Anderson LJ., Greenberg HB., 1995. Analyses of homologous rotavirus infection in the mouse model. Virology, 207, 143–153.
  • Castrucci GM., Ferrari F., Frigeri V., Cilli L., Perucca., Donelli G., 1985. Isolation and characterization of cytopathic strains of rotavirus from rabbits. Arch Virol, 83, 99–104.
  • Chen CC., Baylor M., Bass DM., 1993. Murine intestinal mucins inhibit rotavirus infection. Gastroenterology, 105, 84–92.
  • Christensen ND., Cladel NM., Reed CA., Han R., 2000. Rabbit oral papillomavirus complete genome sequence and immunity following genital infection. Virology, 269, 451-461.
  • Cliver DO., 1997. Virus transmission via food. World health statistics quarterly. Rapport trimestriel de statistiques sanitaires mondiales, 50, 90-101.
  • Collins J., Starkey WG., Walls TS., Clarke GJ., Worton KK., Spencer AJ., Haddon SJ., Osborne MP., Candy DJA., Stephen J., 1988. Intestinal enzyme profiles in normal and rotavirus-infected mice. J Pediatr Gastroenterol Nutr, 7, 264–272.
  • Conner ME., Gilger MA., Estes MK., Graham DY., 1991. Serologic and mucosal immune response to rotavirus infection in the rabbit model. J Virol, 65, 2562–2571.
  • Cook I., 1963. Reovirus type 3 infection in laboratory mice. Aust J Exp Biol Med Sci, 41, 651–660.
  • Descoteaux JP., Lussier G., 1990. Experimental infection of young rabbits with a rabbit enteric coronavirus. Can J Vet Res, 54, 473–476.
  • Ditchfield WJ., 1968. Viral diseases of laboratory animals. Can Med Assoc Jour, 98, 903.
  • Eaton P., 1984. Preliminary observations on enteritis associated with a coronavirus-like agent in rabbits. Lab Anim, 18, 71–74.
  • Eiden J., Lederman HM., Vonderfecht S., Yolken R., 1986. T-celldeficient mice display normal recovery from experimental rotavirus infection. J Virol, 57, 706–708.
  • Forrest JC., Dermody TS., 2003. Reovirus receptors and pathogenesis. J of Virology, 77, 9109-9115.
  • Gong SR., Bao LL., 2018. The battle against SARS and MERS coronaviruses: reservoirs and animal models. Animal Models and Exp Med 1, 125-133.
  • Gordon YJ., Romanowski E., Araullo-Cruz T., 1992. An ocular model of adenovirus type 5 infection in the NZ rabbit. Investigative Ophthal Visual Sci, 33, 574-580.
  • Hansen AK., Franklin C., 2019. Microbiota, laboratory animals, and research. Laboratory Animals, 53, 229–231.
  • Hoffman LM., Hogan KT., Cashdollar LW., 1996. The reovirus nonstructural protein sigma 1NS is recognized by murine cytotoxic T lymphocytes. J Virol, 70, 8160–8164.
  • Jacoby RO., Ball-Goodrich LJ., 1995. Parvovirus infections of mice and rats. Semin Virol, 6, 329–333
  • Jacoby RO., Ball-Goodrich LJ., Besselsen DG., McKisic MD., Riley LK., Smith AL., 1996. Rodent parvovirus infections. Laboratory Animal Science, 46, 370-380.
  • Jacoby RO., Johnson EA., Ball-Goodrich LJ., Smith AL., McKisic MD., 1995. Characterization of mouse parvovirus infection by in situ hybridization. J Virol, 69, 3915–3919.
  • Kale M., Yıldırım Y., Avcı O., Şahinduran Ş., Hasırcıoğlu S.,Saltık HS., Sevgisunar NS., 2017. Burdur Yöresindeki Gastroenteritisli Köpeklerde Canine Parvovirus Enfeksiyonunun Virolojik Araştırılması. Atatürk Üniversitesi Vet Bil Derg, 12(3): 315-319.
  • Kim AH., Hogarty MP., Harris VC., Baldridge MT., 2021. The Complex Interactions Between Rotavirus and the Gut Microbiota. Frontiers in cellular infec microbiol, 10, 820.
  • Kinchington PR., Romanowski EG., Jerold Gordon Y., 2005. Prospects for adenovirus antivirals. J Antimicrobial Chemotherap, 55, 424-429.
  • Koopmans M., Duizer E., 2004. Foodborne viruses: an emerging problem. Int J Food Microbiol, 90, 23-41.
  • Kurdziel AS., Wilkinson N., Langton S., Cook N., 2001. Survival of poliovirus on soft fruit and salad vegetables. J Food Protection, 64, 706-709.
  • La Pierre JG., Marsolais P., Descoteaux JP., 1980. Preliminary report on the observation of a coronavirus in the intestine of the laboratory rabbit. Can J Microbiol, 26, 1204–1208.
  • Lau SK., Woo PC., Yip CC., Fan RY., Huang Y., Wang M., Yuen KY., 2012. Isolation and characterization of a novel Betacoronavirus subgroup A coronavirus, rabbit coronavirus HKU14, from domestic rabbits. Journal of Virology, 86, 5481-5496.
  • Leichus LS., Goldhill JM., Long JD., Percy WH., Shaw RD., Donovan V., Burakoff R., 1994. Effects of rotaviruson epithelial transport in rabbit small intestine. Dig Dis Sci, 39, 2202–2208.
  • Lippe R., Luke E., Kuah YT., Lomas C., Jefferies WA., 1991. Adenovirus infection inhibits the phosphorylation of major histocompatibility complex class I proteins. J Exp Med, 174, 1159–1166.
  • Little LM., Shadduck JA., 1982. Pathogenesis of rotavirus infection in mice. Infect Immun, 38, 755–763
  • Lu T., Tao L., Yu H., Zhang H., Wu Y., Wu S., Zhou J., 2021. Development of a reverse transcription loop mediated isothermal amplificationassay for the detection of Mouse reovirus type 3 in laboratory mice. Scientific Reports, 11(1), 1-9.
  • Malik YS., Matthijnssens J., 2014. Enteric viral infection in human and animal. Virus Disease, 25, 145–146.
  • McKisic MD., Lancki DW., Otto G., Padrid P., Snook S., Cronin DC., Lohmar PD., Wong T., Fitch FW., 1993. Identification and propagation of a putative immunosuppressive orphan parvovirus in cloned T cells. J Immunol, 150, 419–428.
  • McNeal MM., Broome RL., Ward RL. 1994. Active immunity against rotavirusinfection in mice is correlated with viral replication and titers of serum rotavirus IgA following vaccination. Virology, 204, 642–650.
  • Meng QS., Gerba CP., 1996. Comparative inactivation of enteric adenoviruses, poliovirus and coliphages by ultraviolet irradiation. Water Research, 30, 2665-2668.
  • Müftüoğlu B., Albayrak H., 2019. Fare, Sıçan ve Tavşanların Viral Hastalıkları. Turkish Veterinary Journal, 1, 84-89.
  • Müller L., Berkeley R., Barr T., Ilett E., Errington-Mais F., 2020. Past, present and future ofoncolytic reovirus. Cancers, 12, 3219.
  • Nakawesi J., Konjit GM., Dasoveanu DC., Johansson-Lindbom B., Lahl K., 2021. Rotavirus infection causes mesenteric lymph node hypertrophy independently of type I interferon or TNF-α in mice. European Journal of Immunology, 51, 1143-1152.
  • Osterhaus AD., Teppema JS., Van Steenis G., 1982. Coronavirus-like particles in laboratory rabbits with different syndromes in the Netherlands. Lab Anim Sci, 32, 663–665.
  • Peh WL., Middleton K., Christensen N., Nicholls P., Egawa K., Sotlar K., Doorbar J., 2002. Life cycle heterogeneity in animal models of human papillomavirus-associated disease. Journal of Virology, 76, 10401-10416.
  • Phillips MB., Dina Zita M., Howells MA., Weinkopff T., Boehme KW., 2020. Lymphatic Type 1 Interferon Responses Are Critical for Control of Systemic Reovirus Dissemination. Journal of Virology, 95, e02167-20.
  • Reddick RA., Lefkowitz SS., 1969. In vitro immune responses of rabbits with persistent adenovirus type 5 infection. J Immunol, 103, 687–694.
  • Seyed-Khorrami SM., Soleimanjahi H., Soudi S., Habibian A., 2021. MSCs loaded with oncolytic reovirus: migration and in vivo virus delivery potential for evaluating anti-cancer effect in tumor-bearing C57BL/6 mice. Cancer Cell International, 21, 1-19.
  • Small JD., Woods RD., 1987. Relatedness of rabbit coronavirus to other coronaviruses. Adv Exp Med Biol, 218, 521–527.
  • Smith AL., Jacoby RO., Johnson EA., Paturzo F., Bhatt PN., 1993. In vivo studies with an “orphan” parvovirus of mice. Lab Anim Sci, 43, 175–182.
  • Theiss JC., Stoner GD., Kniazeff AK., 1978. Effect of reovirus infection on pulmonary tumor response to urethane in strain A mice. J Natl Cancer Inst, 61, 131–134.
  • Thouless ME., DiGiacomo RF., Deeb BJ., 1996. The effect of combined rotavirus and Escherichia coli infections in rabbits. Lab Anim Sci, 46, 381–385.
  • Tian X., Mo C., Zhou L., Yang Y., Zhou Z., You A., Zhou R., 2021. Epitope mapping of severe acute respiratory syndrome-related coronavirus nucleocapsid protein with a rabbit monoclonal antibody. Virus Research, 300, 198445.
  • Timurkan MÖ., Alkan F., 2020. Identification of rotavirus A strains in small ruminants: first detection of G8P [1] genotypes in sheep in Turkey. Arch virol, 165, 425-431.
  • Wang X., Yang Y., Wang N., Wu X., Xu J., Zhou Y., He Z., 2021. Mesenchymal stem cell carriers enhance antitumor efficacy induced by oncolytic reovirus in acute myeloid leukemia. International Immunopharmacology, 94, 107437.
  • Wilgenburg BJ., Budgeon LR., Lang MC., Griffith JW., Christensen ND., 2005. Characterization of immune responses during regression of rabbit oral papillomavirus infections. Comparative Medicine, 55, 431-439.
  • Yilmaz V., TimurkanMO., Coskun N., Yildirim Y., 2017. Investigation of Rotavirus infection in sheep using serological and molecular techniques. Indian Journal of Animal Research, 51, 525-530.