NUMERICAL ANALYSES OF THERMAL PERFORMANCES OF THE CONVENTIONAL AND THE IMMERSION COOLING METHODS FOR LITHIUM-ION BATTERY PACKS

NUMERICAL ANALYSES OF THERMAL PERFORMANCES OF THE CONVENTIONAL AND THE IMMERSION COOLING METHODS FOR LITHIUM-ION BATTERY PACKS

The transition from fossil fuel vehicles to electric has increased rapidly in recent years to reduce carbon emissions and use accessible energy. The main obstacles to the widespread use of electric vehicles are limited battery capacities, long charging times, thermal management in sudden charge and discharge situations and thermal runaway risks. The adverse effects of non-homogeneous temperature distribution on electrically driven vehicles have demonstrated the necessity of a thermal management system. The most used thermal management systems in practice are air-cooled, cooling plate (pipe) systems and direct dielectric cooling systems, which have recently become widespread. This study focused on the thermal analyses of the different thermal cooling methods. All analyses have been conducted using Ansys Fluent software. It has been observed that the dielectric direct cooling method, which is the newest method, has a performance value of 12% better than other systems at 1C normal operating conditions.

___

  • Amalesh, T., Narasimhan, L. N., ‘‘Cooling of a lithium-ion battery using phase change material with air/dielectric fluid media: A numerical study’’, Journal of Power and Energy, vol. 234(5), pp. 722-738, 2020.
  • E. Langer, “Liquid cooling for EV charging – what we know to keep electric vehicles on the go,” 2019. [Online]. Available: https://www.cpcworldwide.com/Portals/0/Library/Resources/Literature/WhitePapers/Documents/CPC-Liquid%20Cooling%20in%20Electric%20Vehicles.pdf [Accessed Feb. 2023].
  • EPA, “US Environmental Protection Agency,” 2022. [Online]. Available: https://www.epa.gov/ [Accessed Jan. 2023].
  • Castrol, “Castrol Coolant Fluent,” 2022. [Online]. Available: https://www.castrol.com/tr_tr/turkey/home/technology-and-innovation/castrol-e-sivilari/sogutucu-e-sivilari.html [Accessed Feb. 2023].
  • Mivolt, “Liquid Immersion Cooling,” 2022. [Online]. Available: https://mivoltcooling.com/ [Accessed Feb. 2023].
  • Zhao, G., Wang, X., Negnevitsky, M., Li, C., ‘‘An up-to-date review on the design improvement and optimization of the liquid-cooling battery thermal management system for electric vehicles’’, Applied Thermal Energy, vol 219, part B, 25 Jan 2023, 119626, Nov. 2022.
  • Xing, “Xing Mobility Technology,” 2022. [Online]. Available: https://www.xingmobility.com/ [Accessed Feb. 2023].
  • Z. Rao, S. Wang, ‘‘A review of power battery thermal energy management’’, Renewable and Sustainable Energy Reviews, vol 15, issue 9, pp 4551-4571, Dec 2011.
  • J. Han, S. K. Garud, S. Hwang, Y. Lee, ‘‘Experimental Study on Dielectric Fluid Immersion Cooling for Thermal Management of Lithium-Ion Battery’’, Symmetry/Asymmetry in Advanced Research for Efficient Electric Vehicles, vol 14(10), 2126, 2022.
  • C. Roe, X. Feng, G. White, R. Li, H. Wang, R. Xinyu, X. Li, F. Zhang, V. Null, M. Perkes, Y. Patel, Y. Wang, H. Wang, M. Ouyang, G. Offer, B. Wu, ‘‘Immersion cooling for lithium-ion batteries – A review’’, Journal of Power Sources, vol 525, 231094, March 2022.
  • X. Zhang, L. Zhao, L. Luo, Y. Fan, Z. Du, ‘’A review on thermal management of lithium-ion batteries for electric vehicles’’, Energy, Volume 238, Part A, 121652, January 2022.
  • D. Chen, J. Jiang, G. Kim, C. Yang, ‘’Comparison of different cooling methods for lithium-ion battery cells’’, Applied Thermal Engineering, 94(2), September 2015.
  • M. Liu, Y. Ouyang, Y. Cheng L. Lu, "A comparative study of air cooling, liquid cooling and phase change cooling in lithium-ion batteries thermal management for electric vehicles," Applied Energy, vol. 211, pp. 51-60, Feb. 2018.
  • M. Zhao, Z. Lu, W. Wang, J. Liu, K. Cheng, "Experimental Study on Thermal Performance of Three Kinds of Cooling Methods for Lithium-Ion Power Battery," Applied Thermal Engineering, vol. 145, pp. 87-94, Oct. 2018.
  • A. Herman, ‘‘Liquid cooling manifold with multi-function thermal interface,’’ U.S. Patent US8263250B2, 2010.
  • M. S. Çetin, B. Karakaya, T. M. Gençoğlu, ‘‘Modelling of Lithium-Ion Batteries for Electric Vehicles’’, Fırat University Journal of Engineering Sciences, vol. 33(2), 755-763, 2021.
  • P. Ramadass, B. Haran, R. White, N. B. Popov, ‘‘Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance’’, Journal of Power Sources, vol. 112, issue 2, pp. 606-613, Nov. 2002.
  • E. Çetkin, ‘‘The rise of electric vehicles and battery thermal management system’’, Engineer and Machine, pp. 29-33, Nov. 2020.
  • Alldatasheet, Cell Properties, 2022. [Online]. Available: https://www.alldatasheet.com/ [Accessed Jan. 2023].
  • ANSYS, Fluent. ANSYS, Inc. [Online]. Available: https://www.ansys.com/products/fluids/ansys-fluent [Accessed Jan. 2023].
  • C. Bayındırlı, M. Çelik, M. Demiraylı, ‘‘The Investigation of Flow Characteristic Around a Bus Model by CFD Method and Improvement of Drag Force by Passive Flow Control Method’’, Journal of Polytechnic, vol. 21(4), pp. 785-795, 2018.
  • G. A. Stefanopoulou, Y. Kim, ‘‘System-level management of rechargeable lithium-ion batteries’’, Rechargeable Lithium Batteries from Fundamentals to Applications, Woodhead Publishing Series in Energy, pp. 281-302, 2015.
  • P. Kosky, G. Wise, ‘‘Convection Heat Transfer Coefficient – An overview’’, Exploding Engineering, 2013.
  • Y. M. Kaba, O. Kalkan, A. Celen, ‘‘The Investigation of Batteries and Thermal Management Systems Used in Electric Vehicles’’, Konya Journal of Engineering Sciences, vol.9, no. 4, 1119-1136, 2021.
  • V. Mali, R. Saxena, K. Kumar, A. Kalam, B. Tripathi, ‘‘Review on battery thermal management systems for energy-efficient electric vehicles’’, Renewable and Sustainable Energy Reviews, vol 151, 111611, Nov. 2021.
  • P. Dubey, G. Pulugundla, K. A. Srouji, Direct Comparison of Immersion and Cold-Plate Based Cooling for Automotive Li-Ion Battery Modules, Energies, vol. 14(5), 1259, 2021.
  • K. V. Jithin, P. K. Rajesh, "Numerical analysis of single-phase liquid immersion cooling for lithium-ion battery thermal management using different dielectric fluids’’, International Journal of Heat and Mass Transfer, vol. pp. 188, 2022.
  • S. M. Patil, J. Seo, M. Lee, ‘‘A novel dielectric fluid immersion cooling technology for Li-ion battery thermal management’’, Energy Conversion and Management, vol. 229, 113715, Feb. 2021.
Konya Journal of Engineering Sciences-Cover
  • Yayıncı: Konya Teknik Üniversitesi
Sayıdaki Diğer Makaleler

OPTIMAL LOCATION OF ACTION POTENTIAL GENERATION BASED ON ACTIVATION FUNCTION USING COMPUTATIONAL MODELLING

Enver SALKIM

Silikat Katkılı Esnek β-TCP/PLA Kemik Greftleri ile İnsan Mezenkimal Kök Hücrelerinin Gelişmiş Osteojenik Farklılaşması

Günnur ONAK PULAT, Gülşah SUNAL, Ozan KARAMAN

AYRI OPTİMİZASYON PROBLEMLERİ İÇİN SİMETRİ YÖNTEMLİ AYRIK BİR PARÇACIK SÜRÜSÜ ALGORİTMASI

Emine BAŞ, Gülnur YILDIZDAN

THE EMPIRICAL STABILITY EVALUATION OF THE KÖRÜKINI CAVE, DEREBUCAK, KONYA

Ali Ferat BAYRAM, Naji ALQUBALİ

NEW METRIC FOR THE CALCULATION OF SENSITIVITY ANALYSIS INDEX OF FLEXIBLE PAVEMENT USING MECHANISTIC-EMPIRICAL APPROACH, TURKEY-CASE STUDY

Saadoon Obaid Eyada EYADA, Osman Nuri ÇELİK, Nibras Y. ABDULLA

NUMERICAL ANALYSES OF THERMAL PERFORMANCES OF THE CONVENTIONAL AND THE IMMERSION COOLING METHODS FOR LITHIUM-ION BATTERY PACKS

Furkan ERGÜL, Kenan TÜFEKÇİ

DETERMINING THE MOST POWERFUL FEATURES IN THE DESIGN OF AN AUTOMATIC SLEEP STAGING SYSTEM

Seral ÖZŞEN, Yasin KOCA, Gülay TEZEL, Sena ÇEPER, Serkan KÜÇÇÜKTÜRK, Hülya VATANSEV

KİL MİNERALLERİNİN KÖMÜRÜN FLOTASYON PERFORMANSINA VE ORTALAMA KABARCIK BOYUTUNA ETKİSİ

Vildan ÖNEN, Ayşe Zeynep ÇAĞLAR, Hasan Ali TANER

Aktif Paketleme İçin Hazırlanan Kitosan:Jelatin Döküm Filmlerin Özelliklerine Portakal Kabuğu Uçucu Yağının Etkisi

Fatma DEMİR, Gülden GÖKŞEN, Didem DEMİR KARAKUŞ

COMPARISON OF INNOVATIVE TREND ANALYSIS METHODS FOR HYDROMETEOROLOGICAL PARAMETERS IN THE KARASU SUB-BASIN

Cihangir KÖYCEĞİZ, Meral BÜYÜKYILDIZ