OPTIMAL LOCATION OF ACTION POTENTIAL GENERATION BASED ON ACTIVATION FUNCTION USING COMPUTATIONAL MODELLING

OPTIMAL LOCATION OF ACTION POTENTIAL GENERATION BASED ON ACTIVATION FUNCTION USING COMPUTATIONAL MODELLING

Transcutaneous electrical nerve stimulation is used to elevate health-related disorders. This technology is now an important therapeutic system for medical science. In this system, the electrical current pulse is applied over the skin through the inner layers via electrodes to activate excitable tissue layers. Activating other excitable tissue layers may cause discomfort. Thus, it is vital to design electrode configuration arrangements to activate the target anatomical layers without affecting the neighboring ones. A device for primary headaches showed mixed results. This may be related to the electrode position that requires higher stimulus current levels to activate target nerve fibers. This may stimulate neighboring nerve fibers which resulted in the discomfort of patients. A feasible solution is to identify the optimal electrode configuration based on the activation function which is the second derivative of the electric potential along an axon. This may guide to estimate of the possibility of action potential generation on the neural tissue layer using a specified electrode arrangement. In this study, the multilayered human head was developed based on MRI data set using pre and post-processing. Then multi-electrode arrangements were developed to examine the possible nerve activation location. Results showed that the nerve fibers were activated at the same location of the trajectory for the anodal and cathodal stimulation. This may be proof that the activation function can be used to define the optimal location of nerve activation. This may lead to lower thresholds for similar therapeutic benefits in transcutaneous electrical nerve stimulation with decreased power consumption.

___

  • N. Ravichandran, M. Y. Teo, K. Aw, and A. McDaid, “Design of Transcutaneous Stimulation Electrodes for Wearable Neuroprostheses,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, no. 7, pp. 1651–1660, Jul. 2020, doi: 10.1109/TNSRE.2020.2994900.
  • B. A. Karamian et al., “The role of electrical stimulation for rehabilitation and regeneration after spinal cord injury,” Journal of Orthopaedics and Traumatology, vol. 23, no. 1. Springer Science and Business Media Deutschland GmbH, Dec. 01, 2022. doi: 10.1186/s10195-021-00623-6.
  • A. Gupta, N. Vardalakis, and F. B. Wagner, “Neuroprosthetics: from sensorimotor to cognitive disorders,” Communications biology, vol. 6, no. 1. NLM (Medline), p. 14, Dec. 01, 2023. doi: 10.1038/s42003-022-04390-w.
  • E. Salkim, A. Shiraz, and A. Demosthenous, “Impact of neuroanatomical variations and electrode orientation on stimulus current in a device for migraine: A computational study,” J Neural Eng, vol. 17, no. 1, 2020, doi: 10.1088/1741-2552/ab3d94.
  • E. Salkim, A. Shiraz, and A. Demosthenous, “Influence of cellular structures of skin on fiber activation thresholds and computation cost In fl uence of cellular structures of skin on fi ber activation thresholds and computation cost,” Biomed Phys Eng Express, vol. 5, no. 1, p. 015015, 2018.
  • S. Joucla, A. Glière, and B. Yvert, “Current approaches to model extracellular electrical neural microstimulation,” Front Comput Neurosci, vol. 8, no. February, pp. 1–12, 2014, doi: 10.3389/fncom.2014.00013.
  • S. F. Cogan, “Neural Stimulation and Recording Electrodes,” Annu Rev Biomed Eng, vol. 10, no. 1, pp. 275–309, 2008, doi: 10.1146/annurev.bioeng.10.061807.160518.
  • A. Kuhn, T. Keller, M. Lawrence, and M. Morari, “The influence of electrode size on selectivity and comfort in transcutaneous electrical stimulation of the forearm,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 18, no. 3, pp. 255–262, Jun. 2010, doi: 10.1109/TNSRE.2009.2039807.
  • A. Patriciu, K. Yoshida, J. J. Struijk, T. P. DeMonte, M. L. G. Joy, and H. Stoødkilde-Joørgensen, “Current density imaging and electrically induced skin burns under surface electrodes,” IEEE Trans Biomed Eng, vol. 52, no. 12, pp. 2024–2031, Dec. 2005, doi: 10.1109/TBME.2005.857677.
  • D. Magis, S. Sava, T. S. d’Elia, R. Baschi, and J. Schoenen, “Safety and patients’ satisfaction of transcutaneous supraorbital neurostimulation (tSNS) with the Cefaly® device in headache treatment: a survey of 2,313 headache sufferers in the general population.,” J Headache Pain, vol. 14, p. 95, 2013, doi: 10.1186/1129-2377-14-95.
  • J. Schoenen et al., “Migraine prevention with a supraorbital transcutaneous stimulator: A randomized controlled trial,” Neurology, vol. 80, no. 8, pp. 697–704, 2013, doi: 10.1212/WNL.0b013e3182825055.
  • E. Salkim, “Electrode Array Position Guiding in Cochlea Based on Impedance Variation : Computational Study,” Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 1, no. 1, pp. 64–71, 2020.
  • A. Fellner, A. Heshmat, P. Werginz, and F. Rattay, “A finite element method framework to model extracellular neural stimulation,” J Neural Eng, vol. 19, no. 2, Apr. 2022, doi: 10.1088/1741-2552/ac6060.
  • F. Rattay, S. M. Danner, U. S. Hofstoetter, and K. Minassian, “Finite Element Modeling for Extracellular Stimulation,” in Encyclopedia of Computational Neuroscience, Springer New York, 2014, pp. 1–12. doi: 10.1007/978-1-4614-7320-6_593-5.
  • S. Joucla and B. Yvert, “Modeling extracellular electrical neural stimulation: From basic understanding to MEA-based applications,” Journal of Physiology-Paris, vol. 106, no. 3–4, pp. 146–158, 2012, doi: 10.1016/j.jphysparis.2011.10.003.
  • H. Ye, “Finding the Location of Axonal Activation by a Miniature Magnetic Coil,” Front Comput Neurosci, vol. 16, Jun. 2022, doi: 10.3389/fncom.2022.932615.
  • D. N. Anderson, G. Duffley, J. Vorwerk, A. D. Dorval, and C. R. Butson, “Anodic stimulation misunderstood: Preferential activation of fiber orientations with anodic waveforms in deep brain stimulation,” J Neural Eng, vol. 16, no. 1, Feb. 2019, doi: 10.1088/1741-2552/aae590.
  • K. N. Christensen, N. Lachman, W. Pawlina, and C. L. Baum, “Cutaneous Depth of the Supraorbital Nerve,” Dermatologic Surgery, vol. 40, no. 12, pp. 1342–1348, 2014, doi: 10.1097/DSS.0000000000000174.
  • Y.-C. Gil, K.-J. Shin, S.-H. Lee, W.-C. Song, K.-S. Koh, and H. J. Shin, “Topography of the supraorbital nerve with reference to the lacrimal caruncle: danger zone for direct browplasty,” British Journal of Ophthalmology, vol. 101, no. 7, pp. 940–945, 2017, doi: 10.1136/bjophthalmol-2016-309332.
  • “OVERVIEW » IT’IS Foundation.” https://itis.swiss/virtual-population/regional-human-models/overview/ (accessed Jan. 20, 2023).
  • A. K. D. Harold Ellis, Bari M Logan, Human Sectional Anatomy, Third Edit. London: Hodder Arnold, 2009.
  • M. Z. Siemionow, “The Face as a Sensory Organ,” in The Know-How of Face Transplantation, M. Siemionow, Ed., Springer, 2011, pp. 207–212. doi: 10.1007/978-0-85729-253-7.
  • F. Rattay, “Analysis of models for extracellular fiber stimulation.pdf,” IEEE Trans. Biomed. Eng., vol. 36, no. 7, pp. 676–682, 1989.
  • A. Fellner, A. Heshmat, P. Werginz, and F. Rattay, “A finite element method framework to model extracellular neural stimulation,” J Neural Eng, vol. 19, no. 2, Apr. 2022, doi: 10.1088/1741-2552/ac6060.
  • “Low Frequency (Conductivity) » IT’IS Foundation.” https://itis.swiss/virtual-population/tissue-properties/database/low-frequency-conductivity/ (accessed May 20, 2019).
  • E. Salkim, “Optimisation of a Wearable Neuromodulator for Migraine Using Computational Methods.”
  • E. Salkim, “Analysis of tissue electrical properties on bio-impedance variation of upper limps”, doi: 10.3906/elk-1300-0632.3908.
  • T. F. Oostendorp, J. Delbeke, and D. F. Stegeman, “The conductivity of the human skull: Results of in vivo and in vitro measurements,” IEEE Trans Biomed Eng, vol. 47, no. 11, pp. 1487–1492, Nov. 2000, doi: 10.1109/TBME.2000.880100.
Konya Journal of Engineering Sciences-Cover
  • Yayıncı: Konya Teknik Üniversitesi
Sayıdaki Diğer Makaleler

COMPARISON OF INNOVATIVE TREND ANALYSIS METHODS FOR HYDROMETEOROLOGICAL PARAMETERS IN THE KARASU SUB-BASIN

Cihangir KÖYCEĞİZ, Meral BÜYÜKYILDIZ

IMPROVEMENT OF HEAT AFFECTED ZONE OF GTAWed 5754 ALUMINUM ALLOY WITH FSP

Fatih KAHRAMAN, Gökçe Mehmet GENÇER, Coşkun YOLCU

MODEL REFERANS UYARLAMALI PID DENETLEYİCİ TASARIMI VE DENETLEYİCİ PARAMETRELERİNİN SİSTEM DAVRANIŞINA ETKİ ANALİZİ: DC MOTOR KONUM KONTROLÜ

Akif YAVUZSOY, Hüseyin SARGIN, Tuğçe YAREN, Selçuk KİZİR

NUMERICAL ANALYSES OF THERMAL PERFORMANCES OF THE CONVENTIONAL AND THE IMMERSION COOLING METHODS FOR LITHIUM-ION BATTERY PACKS

Furkan ERGÜL, Kenan TÜFEKÇİ

DETERMINATION OF RESWELLING PROPERTIES AND WATER DIFFUSION MECHANISM OF HYDROGEL COMPOSITES

Mehmet YURTTADUR, Gülcihan GÜZEL KAYA, Hüseyin DEVECİ

DATA INTEGRITY AND QUALITY ANALYSIS OF LOW COST ZED-F9P U-BLOX GNSS RECEIVER

Sermet ÖĞÜTCÜ, Salih ALÇAY, Hüseyin DUMAN, Behlül Numan ÖZDEMİR, Ülkünur KORAY

NEW METRIC FOR THE CALCULATION OF SENSITIVITY ANALYSIS INDEX OF FLEXIBLE PAVEMENT USING MECHANISTIC-EMPIRICAL APPROACH, TURKEY-CASE STUDY

Saadoon Obaid Eyada EYADA, Osman Nuri ÇELİK, Nibras Y. ABDULLA

THE EMPIRICAL STABILITY EVALUATION OF THE KÖRÜKINI CAVE, DEREBUCAK, KONYA

Ali Ferat BAYRAM, Naji ALQUBALİ

AYRI OPTİMİZASYON PROBLEMLERİ İÇİN SİMETRİ YÖNTEMLİ AYRIK BİR PARÇACIK SÜRÜSÜ ALGORİTMASI

Emine BAŞ, Gülnur YILDIZDAN

PRODUCTION OF OXIDE DISPERSION STRENGTHENED INCONEL 718 ALLOYS USING CONVENTIONAL POWDER METALLURGY AND ADDITIVE MANUFACTURING METHODS

Eda AYDOĞAN GÜNGÖR