Düşük Şiddetli Darbeli Ultrasonun Ortodontik Diş Hareketi Üzerine Etkilerinin Histolojik ve Biyokimyasal Olarak İncelenmesi

Amaç: Çalışmamızın amacı düşük şiddetli darbeli ultrasonun ratlarda ortodontik diş hareketi üzerine etkilerini araştırmaktır. Gereç ve Yöntem: Bu çalışmada Adnan Menderes Üniversitesi Hayvan Laboratuvarı'ndan 12 haftalık 40 yetişkin erkek Wistar albino rat kullanılmıştır. Ratlar her bir grupta on tane olmak üzere dört gruba ayrılmıştır. Grup 1, tedavi edilmemiş kontrol grubuydu. Grup 2'de dişleri hareket ettirmek için ortodontik spring kullanılmıştır. Grup 3 ve 4'te, ortodontik tedaviye ek olarak 14 gün boyunca 16 J/cm2 veya 48 J/cm2'de düşük şiddetli darbeli ultrason uygulanmıştır. 14. günde diş hareket miktarı ölçülmüştür. Serum kemik alkalen fosfataz (BALP) ve Ctelopeptid tip I kollajen (CTX-I) düzeyleri biyokimyasal olarak analiz edilmiştir. Histolojik olarak osteoklast, osteoblast ve inflamatuar hücre sayısı, kılcal damar yoğunluğu ve yeni kemik oluşumu belirlenmiştir. Nükleer faktör-kappa B ligand (RANKL), osteoprotegerin (OPG), vasküler endotelyal büyüme faktörü (VEGF) ve transforme edici büyüme faktörü-β (TGF-β) immünohistokimyasal boyama kullanılarak değerlendirilmiştir. Bulgular: Grup 4'teki BALP ve CTX-I düzeyleri kontrol grubuna göre anlamlı olarak daha yüksekti (p

Histological and Biochemical Investigation of the Effects of Low Intensity Pulsed Ultrasound on Orthodontic Tooth Movement

Objective: The goal of our study is to assess the effects of low intensity pulsed ultrasound on orthodontic tooth movement in rats. Methods: For this study, 40 adult male Wistar albino rats (12-weeks old age) were used from the Animal Laboratory at Adnan Menderes University. Rats were divided into four groups each of ten. Group 1 was the untreated as a control. In group 2, an orthodontic spring was used to move teeth. For groups 3 and 4, orthodontic treatment was combined with low intensity pulsed ultrasound at 16 J/cm2 or 48 J/cm2 for 14 days, respectively. Tooth movement was measured at the last day of treatment. Serum bone alkaline phosphatase (BALP) and C-telopeptide type I collagen (CTX-I) levels were analyzed biochemically. The number of osteoclasts, osteoblasts and inflammatory cells, capillary density and new bone formation was determined histologically. Receptor activator of nuclear factorkappa B ligand (RANKL), osteoprotegerin (OPG), vascular endothelial growth factor (VEGF) and transforming growth factor-β (TGF-β) were assessed using immunohistochemical staining. Results: BALP and CTX-I levels in group 4 were significantly higher compared to control (p

___

  • 1. Huang H, Williams RC, Kyrkanides S. Accelerated orthodontic tooth movement: molecular mechanisms. Am J Orthod Dentofacial Orthop 2014;146:620-32.
  • 2. Miresmaeili A, Mollaei N, Azar R, et al. Effect of dietary vitamin C on orthodontic tooth movement in rats. J Dent (Tehran) 2015;12:409-13.
  • 3. Qamruddin I, Alam MK, Khamis MF, et al. Minimally invasive techniques to accelerate the orthodontic tooth movement: a systemic review of animal studies. Biomed Res Int 2015; 608530.
  • 4. Gulec A¸ Bakkalbası BC, Cumbul A, et al. Effects of local platelet-rich plasma injection on the rate of orthodontic tooth movement in a rat model: A histomorphometric study. Am J Orthod Dentofac Orthop 2017;151:92-104.
  • 5. Haugen S, Aasarød KM, Stunes AK, et al. Adiponectin prevents orthodontic tooth movement in rats. Arch Oral Biol 2017;83:304-11.
  • 6. Brunet MD, Araujo CM, Johann AC, et al. Effects of zoledronic acid on orthodontic tooth movement in rats. Braz Dent J 2016;27:515-23.
  • 7. Aghili H, Yassaei S, Zahir ST, et al. Effect of methylphenidate on tooth movement and histological features in rats. J Clin Diagn Res 2017;11:ZF01-05.
  • 8. Kawakami M, Takano-Yamamoto T. Local injection of 1,25-dihydroxyvitamin D3 enhanced bone formation for tooth stabilization after experimental tooth movements in rats. J Bone Miner Metab 2004;22:541-6.
  • 9. Soma S, Iwamoto M, Higuchi Y, et al. Effects of continuous infusion of PTH on experimental tooth movement in rats. J Bone Miner Res 1999;14:546-54.
  • 10. Yamasaki K, Shibata Y, Fukuhara T. The effect of prostaglandins on experimental tooth movement in monkeys (Macacafuscata). J Dent Res 1982;61:1444-6.
  • 11. Kobayashi Y, Takagi H, Sakai H, et al. Effects of local administration of osteocalcin on experimental tooth movement. Angle Orthod 1998;68: 259-66.
  • 12. Chen Y, Wang XX, Zhao BJ, et al. Effects of icariin on orthodontic tooth movement in rats. Int J Clin Exp Med 2015;15:8608-16.
  • 13. Tsuka Y, Fujita T, Shirakura M, et al. Effects of neodymium-dopedyttrium aluminium garnet (Nd:YAG) laser irradiation on bone metabolism during tooth movement. J Lasers Med 2016;7:40-4.
  • 14. Milligan M, Arudchelvan Y, Gong SG. Effects of two wattages of low-level laser therapy on orthodontic tooth movement. Arch Oral Biol 2017;80:62-8.
  • 15. Altan BA, Sokucu O, Ozkut MM, et al. Metrical and histological investigation of the effects of low-level laser therapy on orthodontic tooth movement. Lasers Med Sci 2012;27:131-40.
  • 16. Feres MFN, Kucharski C, Diar-Bakirly S, et al. Effect of low-intensity pulsed ultrasound on the activity of osteoclasts: an in vitro study. Arch Oral Biol 2016;70:73-8.
  • 17. Dahhas FY, El-Bialy T, Afify AR, et al. Effects of low-intensity pulsed ultrasound on orthodontic tooth movement and orthodontically induced inflammatory root resorption in ovariectomized osteoporotic rats. Ultrasound Med Biol 2016;42:808-14.
  • 18. Xue H, Zheng J, Cui Z, et al. Low-intensity pulsed ultrasound accelerates tooth movement via activation of the BMP-2 signaling pathway. Plos One 2013;8:e68926.
  • 19. El-Bialy T, El-Shamy I, Graber TM. Repair of orthodontically induced root resorption by ultrasound in humans. Am J Orthod Dentofac Orthop 2004;126:186-93
  • 20. El-Bialy T, Janadas A, Albaghdadi T. Nonsurgical treatment of hemifacial microsomia by therapeutic ultrasound and hybrid functional appliance. Open Access J Clin Trials 2010;2,29-36.
  • 21. Toy E, Oztürk F, Altindiş S, et al. Effects of low-intensity pulsed ultrasound on bone formation after the expansion of the inter-premaxillary suture in rats: a histologic and immunohistochemical study. Aust Orthod J 2014;30:176-183.
  • 22. Watson T. Ultrasound in contemporary physiotherapy practice. Ultrasonics 2008;48:321-29.
  • 23. Khanna A, Nelmes RT, Gougoulias N, et al. The effects of LIPUS on soft-tissue healing: a review of literature. Br Med Bull 2009;89:169-82.
  • 24. terHaar G. Therapeutic ultrasound. Eur J Ultrasound 1999; 9:3-9.
  • 25. Robertson VJ, Baker KG. A review of therapeutic ultrasound: effectiveness studies. Phys Ther. 2001;81:1339-50.
  • 26. Gerdhem P, Ivaska KK, Alatalo SL, et al. Biochemical markers of bone metabolism and prediction of fracture in elderly women. J Bone Miner Res 2004;19:386-93.
  • 27. Reher P, Elbeshier EI, Harvey W,et al. The stimulation of bone formation in vitro by therapeutic ultrasound. Ultrasound Med Biol 1997;23:1251-8.
  • 28. Reher P, Harris M, Whiteman M, et al. Ultrasound stimulates nitric oxide and prostaglandin E2 production by human osteoblast. Bone 2002;3:236-41.
  • 29. Suzuki A, Takayama T, Suzuki N, et al. Daily low-intensity pulsed ultrasound mediated osteogenic differentiation in rat osteoblasts. Acta Biochim Biophys Sin (Shanghai) 2009;41:108-15.
  • 30. Kantarci A, Will L, Yen S (eds). Tooth Movement. Front Oral Biol 2016, Basel, Karger, 9-16.
  • 31. Borsje MA, Ren Y, de Haan-Visser HW, et al. Comparison of low-intensity pulsed ultrasound and pulsed electromagnetic field treatments on OPG and RANKL expression in human osteoblast-like cells. Angle Orthod 2010;80:498-503.
  • 32. Dalla-Bona DA, Tanaka E, Inubushi T, et al. Cementoblast response to low- and high-intensity ultrasound. Arch Oral Biol 2008;53,318-23.
KONURALP TIP DERGİSİ-Cover
  • ISSN: 1309-3878
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2009
  • Yayıncı: Düzce Üniversitesi Tıp Fakültesi Aile Hekimliği AD adına Yrd.Doç.Dr.Cemil Işık Sönmez