MCF-7 MEME KANSERİ HÜCRE HATTINDA LEUCOJUM AESTIVUM'DAN ELDE EDİLEN GALANTAMİNİN ANTİANJİOJENİK VE APOPTOTİK ETKİLERİNİN ARAŞTIRILMASI

AMAÇ: Mevcut çalışma, MCF-7 meme kanseri hücrelerinde galantaminin antianjiojenik ve apoptotik etkilerini araştırmayı ve literatüre yeni bir bilgi kazandırmayı amaçlamaktadır. GEREÇ VE YÖNTEM: Bu çalışmada, MCF-7 meme kanseri hücre dizisi kullanılmış ve galantamin, Leucojum aestivum'dan HPLC yöntemi ile elde edilmiştir. Galantaminin hücre canlılığı üzerindeki etkisi, kontrol grubu dahil 9 farklı dozda (kontrol, 10, 40, 70, 100, 130, 160, 190, 210 μg/ml) CCK-8 tahlili ile belirlendi. Daha sonra galantaminin etkisini anlamak için diğer analizler (toplam antioksidan seviyesi (TAS), toplam oksidan seviyesi (TOS), poli-ADP riboz polimeraz (PARP) ve vasküler endotelyal büyüme faktörü (VEGF) seviyeleri) 3 grupta incelendi; kontrol, LD50 (100 μg/ml) ve yüksek doz (210 μg/ml) grubu. Ardından oksidatif stres endeksi (OSI) hesaplandı. BULGULAR: Galantamin hücre canlılığını azalttı. LD50 dozu 100 μg/ml olarak belirlendi. VEGF düzeylerinde herhangi anlamlı bir değişim olmadığı belirlendi. PARP düzeylerinde doza bağlı olarak anlamlı bir azalma olmuştur (Kontrol: 2.78667±0.155392, LD50: 1.51000±0.107145, Yüksek doz: 1.01000±0.054772 ng/L, p=0.000). Kontrol grubuna kıyasla TAS verilerinde doza bağlı anlamlı bir azalma (Kontrol: 0.09633±0.002658, LD50: 0.06283±0.002317, Yüksek doz: 0.04050±0.001871, p=0.000) ve TOS verilerinde doza bağlı anlamlı bir artış vardı (Kontrol:0.12500±0.010488, LD50: 0.21667±0.015055, Yüksek doz: 0.31833±0.021370, p=0.000). OSI verilerinde doza bağlı anlamlı artış bulundu. (Kontrol: 129.964±13.018, LD50: 345.161±26.480, Yüksek doz: 788.485±78.575, p=0.000). SONUÇ: Galantaminin herhangi bir dozda VEGF düzeyleri baz alınarak anjiyogenezde anlamlı bir etkisinin olmadığı belirlendi. Galantaminin MCF-7 hücrelerine belirli dozlarda hücre canlılığına negatif etki yapmıştır ve oksidatif stresi artırdığı bulunmuştur. PARP seviyelerindeki düşüş hücrelerin apoptotik süreçle sonuçlanabileceği ihtimalini göstermektedir. Bu bulgular, kanser araştırmalarında galantamin kullanımına farklı bir yaklaşım getirmek için faydalı olabilir.

INVESTIGATION OF ANTIANGIOGENIC AND APOPTOTIC EFFECTS OF GALANTAMINE OBTAINED FROM LEUCOJUM AESTIVUM ON MCF-7 BREAST CANCER CELL LINE

OBJECTIVE: The current study aims to investigate the antiangiogenic and apoptotic effects of galantamine in breast cancer cells and to add new information to the literature. MATERIAL AND METHODS: In this study, MCF-7 breast cancer cell line was used and galantamine was obtained from Leucojum aestivum by HPLC method. The effect of galantamine on cell viability was determined by CCK-8 assay at 9 different doses (control, 10, 40, 70, 100, 130, 160, 190, 210 μg/ml) including the control group. Then, to understand the effect of galantamine, other assays (total antioxidant status (TAS), total oxidant status (TOS), poly-ADP ribose polymerase (PARP), and vascular endothelial growth factor (VEGF) levels) were examined in 3 groups; control, LD50 (100 μg/ml) and high dose (210 μg/ml) group. The oxidative stress index (OSI) was then calculated. RESULTS: Galantamine decreased cell viability. The LD50 dose was determined as 100 μg/ml. There was no significant change in VEGF levels. There was a significant dose-dependent decrease in PARP levels (Control: 2.78667±0.155392, LD50: 1.51000±0.107145, High dose: 1.01000±0.054772 ng/L, p=0.000). Compared to the control group, there was a significant dose-related decrease in TAS data (Control: 0.09633±0.002658, LD50: 0.06283±0.002317, High dose: 0.04050±0.001871, p=0.000) and a significant dose-related increase in TOS data (Control: 0.12500±0.010488, LD50: 0.21667±0.015055, High dose: 0.31833±0.021370, p=0.000). A significant dose-related increase in OSI data was found. (Control: 129.964±13.018, LD50: 345.161±26.480, High dose: 788.485±78.575, p=0.000). CONCLUSIONS: It was determined that galantamine had no significant effect on angiogenesis at any dose based on VEGF levels. Galantamine had a negative effect on cell viability and proliferation at certain doses to MCF-7 cells and was found to increase oxidative stress. The decrease in PARP levels indicates the possibility that cells may result in an apoptotic process. These findings may be useful to take a different approach to the use of galantamine in cancer research.

___

  • 1. American Cancer Society. Breast Cancer Facts & Figures 2019–2020; American Cancer Society, Inc.: Atlanta, GA, USA, 2019.
  • 2. Ataollahi MR, Sharifi J, Paknahad MR, Paknahad A. Breast cancer and associated factors: a review. J Med Life. 2015;8(Spec Iss 4):6–11.
  • 3. Rampogu S, Balasubramaniyam T, Lee J-H. Phytotherapeutic applications of alkaloids in treating breast cancer. Biomed Pharmacother. 2022;155:113760.
  • 4. Wilcock P, Webster RM. The breast cancer drug market. Nat Rev Drug Discov. 2021;20(5);339-40.
  • 5. Habli Z, Toumieh G, Fatfat M, Rahal O, Gali-Muhtasib H. Emerging Cytotoxic Alkaloids in the Battle against Cancer: Overview of Molecular Mechanisms. Molecules. 2017;22(2):250.
  • 6. Alasvand M, Assadollahi V, Ambra R, et al. Antiangiogenic Effect of Alkaloids. Oxid Med Cell Longev. 2019;2019:1–16.
  • 7. Madu CO, Wang S, Madu CO, Lu Y. Angiogenesis in Breast Cancer Progression, Diagnosis, and Treatment. J Cancer. 2020;11(15):4474–94.
  • 8. Curtin NJ, Szabo C. Poly(ADP-ribose) polymerase inhibition: past, present and future. Nat Rev Drug Discov. 2020;19(10):711–36.
  • 9. Cortesi L, Rugo HS, Jackisch C. An Overview of PARP Inhibitors for the Treatment of Breast Cancer. Target Oncol. 2021;16(3):255–82.
  • 10. O HD, Idil O, Kandemir N, Gul M, Konar V. Phytochemical screening and invitro antioxidant, antimicrobial activity and DNA interaction of Leucojum aestivum. Fresenius Environ Bull. 2018;27(10):6704–10.
  • 11. Georgiev V, Ivanov I, Berkov S, et al. Galanthamine production byLeucojum aestivumL. shoot culture in a modified bubble column bioreactor with internal sections. Eng Life Sci. 2012;12(5):534–43.
  • 12. National Center for Biotechnology Information. PubChem Compound Summary for CID 9651, Galantamine. https://pubchem.ncbi.nlm.nih.gov/compound/Galantamine , Access date: 22.09.2022.
  • 13. Roy M, Liang L, Xiao X, et al. Lycorine: A prospective natural lead for anticancer drug discovery. Biomed Pharmacother. 2018;107:615–24.
  • 14. Hazman Ö, Bozkurt MF. Anti-inflammatory and Antioxidative Activities of Safranal in the Reduction of Renal Dysfunction and Damage that Occur in Diabetic Nephropathy. Inflammation. 2015;38(4):1537–45.
  • 15. Hazman Ö, Ovalı S. Investigation of the Anti-Inflammatory Effects of Safranal on High-Fat Diet and Multiple Low-Dose Streptozotocin Induced Type 2 Diabetes Rat Model. Inflammation. 2014;38(3):1012–9.
  • 16. Sangaleti CT, Katayama KY, De Angelis K, et al. The Cholinergic Drug Galantamine Alleviates Oxidative Stress Alongside Anti-inflammatory and Cardio-Metabolic Effects in Subjects With the Metabolic Syndrome in a Randomized Trial. Front Immunol. 2021;12:613979.
  • 17. Ali MA, El-Abhar HS, Kamel MA, Attia AS. Antidiabetic Effect of Galantamine: Novel Effect for a Known Centrally Acting Drug. PLoS ONE. 2015;10(8):e0134648.
  • 18. Ding Y, Qu D, Zhang K-M, et al. Phytochemical and biological investigations of Amaryllidaceae alkaloids: a review. J Asian Nat Prod Res. 2016;19(1):53–100.
  • 19. Doskočil I, Hošťálková A, Šafratová M, et al. Cytotoxic activities of Amaryllidaceae alkaloids against gastrointestinal cancer cells. Phytochem Lett. 2015;13:394–8.
  • 20. Wang J, Xu J, Xing G. Lycorine inhibits the growth and metastasis of breast cancer through the blockage of STAT3 signaling pathway. Acta Biochim Biophys Sin (Shanghai). 2017;49(9):771–9.
  • 21. Khuanjing T, Ongnok B, Maneechote C, et al. Acetylcholinesterase inhibitor ameliorates doxorubicin-induced cardiotoxicity through reducing RIP1-mediated necroptosis. Pharmacol Res. 2021;173:105882.
  • 22. Liu C-T, Yang C-C, Chien W-C, et al. Association between long-term usage of acetylcholinesterase inhibitors and lung cancer in the elderly: a nationwide cohort study. Sci Rep. 2022;12(1):3531.
  • 23. Friedman JR, Richbart SD, Merritt JC, et al. Acetylcholine Signaling System in progression of Lung Cancers. Pharmacol Ther. 2019;194:222–54.
  • 24. Forés-Martos J, Boullosa C, Rodrigo-Domínguez D, et al. Transcriptomic and Genetic Associations between Alzheimer’s Disease, Parkinson’s Disease, and Cancer. Cancers (Basel). 2021;13(12):2990.
  • 25. McNulty J, Nair JJ, Singh M, et al. Selective cytochrome P450 3A4 inhibitory activity of Amaryllidaceae alkaloids. Bioorg Med Chem Lett. 2009 Jun;19(12):3233–7.
  • 26. Henning RJ, Bourgeois M, Harbison RD. Poly(ADP-ribose) Polymerase (PARP) and PARP Inhibitors: Mechanisms of Action and Role in Cardiovascular Disorders. Cardiovasc Toxicol. 2018;18(6):493–506.
  • 27. Vo PHT, Nguyen TDT, Tran HT, et al. Cytotoxic components from the leaves of Erythrophleum fordii induce human acute leukemia cell apoptosis through caspase 3 activation and PARP cleavage. Bioorg Med Chem Lett. 2021;31:127673.
  • 28. Zimmer AS, Gillard M, Lipkowitz S, Lee J-M. Update on PARP Inhibitors in Breast Cancer. Curr Treat Options Oncol. 2018;19(5):21.
  • 29. Lin M-W, Chen Y-H, Yang H-B, et al. Galantamine Inhibits Aβ1–42-Induced Neurotoxicity by Enhancing α7nAChR Expression as a Cargo Carrier for LC3 Binding and Aβ1–42 Engulfment During Autophagic Degradation. Neurotherapeutics. 2019;17(2):676–89.
  • 30. Liu X, Xu K, Yan M, et al. Protective effects of galantamine against Aβ–induced PC12 cell apoptosis by preventing mitochondrial dysfunction and endoplasmic reticulum stress. Neurochem Int. 2010;57(5):588–99.
  • 31. Klaunig JE. Oxidative Stress and Cancer. Curr Pharm Des. 2019;24(40):4771–8.
  • 32. Sammi SR, Rawat JK, Raghav N, et al. Galantamine attenuates N,N-dimethyl hydrazine induced neoplastic colon damage by inhibiting acetylcholinesterase and bimodal regulation of nicotinic cholinergic neurotransmission. Eur J Pharmacol. 2018;818:174–83.
  • 33. Castillo W, Aristizabal-Pachon A. Galantamine protects against beta amyloid peptide-induced DNA damage in a model for Alzheimer’s disease. Neural Regen Res. 2017;12(6):916.
  • 34. Stanca Melincovici C, Boşca A, Şuşman S, et al. Vascular endothelial growth factor (VEGF) -key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 2018;59(2):455–67.
  • 35. Kita Y, Ago Y, Takano E, et al. Galantamine increases hippocampal insulin-like growth factor 2 expression via α7 nicotinic acetylcholine receptors in mice. Psychopharmacology (Berl). 2012;225(3):543–51.
  • 36. Oikawa S, Mano A, Iketani M, et al. Nicotinic receptor-dependent and -independent effects of galantamine, an acetylcholinesterase inhibitor, on the non-neuronal acetylcholine system in C2C12 cells. Int Immunopharmacol. 2015;29(1):31–5.
  • 37. Gowayed MA, Mahmoud SA, Michel TN, et al. Galantamine in rheumatoid arthritis: A cross talk of parasympathetic and sympathetic system regulates synovium-derived microRNAs and related pathogenic pathways. Eur J Pharmacol. 2020;883:173315.
Kocatepe Tıp Dergisi-Cover
  • ISSN: 1302-4612
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1999
Sayıdaki Diğer Makaleler

GEBELERİN COVID-19 HASTALIĞI HAKKINDA BİLGİ DÜZEYİ VE AŞILANMA DURUMLARI

Emine TÜRKOĞLU YILMAZ, İrem KALIPCI

COVID-19 SALGIN DÖNEMİNDE AĞIZ HİJYEN ÜRÜNLERİNİN KULLANIM ALIŞKANLIKLARININ DEĞERLENDİRİLMESİ

Cemile YILMAZ, Latife ALTINOK UYGUN

DİYABETİK OLMAYAN HASTALARDA HİPOGLİSEMİ

Nuriye Hale ERBATUR, Şerife KUŞKONMAZ

PELLUSİD MARJİNAL DEJENERASYON VE KERATOKONUSUN SCHEİMPFLUG KAMERA GÖRÜNTÜLEME PATERNLERİNİN VE PARAMETRELERİNİN KARŞILAŞTIRILMASI

Ayşe Güzin TAŞLIPINAR UZEL, Yeşim ASLAN ALTAY, Ahmet ŞENGÜN

8-12 YAŞ GRUBU ÇOCUKLARDA YEME DAVRANIŞI, BESLENME ÖZYETERLİLİĞİ,EBEVEYNLERİN ÇOCUKLARIN BESLENME TARZI ÜZERİNE ETKİSİ İLE SAĞLIK VE YAŞAM KALİTESİ İLİŞKİSİ

Pınar HAMURCU

YUMUŞAK DOKU KİTLELERİNDE DİFÜZYON AĞIRLIKLI GÖRÜNTÜLEME: GÖRÜNÜR DİFÜZYON KATSAYISI ÖLÇÜMÜ MALİGN LEZYONLARI BENİGNLERDEN AYIRABİLİR Mİ ?

Mehmet OĞUZMAN, Cüneyt ÇALIŞIR, Ulukan İNAN

ROMATOLOJİ POLİKLİNİĞİNE BAŞVURAN GERİYATRİK HASTALARIN RETROSPEKTİF OLARAK DEĞERLENDİRİLMESİ

Adem ERTURK, Alper SARI

ÇOCUKLARDA YAPILAN NATİV BÖBREK BİYOPSİLERİNİN KLİNİKOPATOLOJİK DEĞERLENDİRİLMESİ

Şükran KESKİN GÖZMEN, Erkin SERDAROĞLU, Nida DİNÇEL, Pınar ERTURGUT, Cemaliye BAŞARAN, Fatma DEVRİM, Özlem DUR, Betül PEHLİVAN ZORLU, Mehmet COSKUN, Malik ERGİN

PRİMER İMMÜN TROMBOSİTOPENİDE ARTMIŞ RETİKÜLER LİF DERECESİ

Demircan ÖZBALCI, Emine Güçhan ALANOĞLU, Şirin BAŞPINAR, Enes GÜNHAN, Fatma GÜR HATİP, Ahmet Yunus HATİP

PENİL KURVATÜR NEDENİYLE NESBİT OPERASYONU YAPILAN HASTALARIN MEMNUNİYET DÜZEYLERİ VE CERRAHİ SONUÇLARI

Mahmut ULUBAY, Ekrem AKDENİZ