F64A TARAFINDAN ALZHEİMER BENZERİ DEMANS OLUŞTURULAN RATLARDA BETAİN ve PİPERİNİN ETKİSİ

AMAÇ: Demans hastalarının büyük çoğunluğu (yaklaşık %60- 70) Alzheimer hastalığı (AH)’ndan muzdariptir. AH’nın ayırt edici patolojik belirtileri senil plaklar (SP'ler), nörofibriler yumaklar (NFTS), ve nörodejenerasyondur. Bu çalışmada; nörolojik anomalileri indükleyen Acetylcholine Mustard Aziridin İon (AF64A)'nın neden olduğu hasar ve bu zararın antioksidan piperin ve betain’nin tedavi edici etkisinin belirlenmesi amaçlanmıştır. GEREÇ VE YÖNTEM: Bu çalışmada; 24 Sprague-Dawley erkek sıçan kullanılmış ve 4 grup oluşturulmuştur: Sağlıklı sıçanlardan oluşan grup 1 (kontrol, n=6); AF64A ile deneysel demans oluşturulan grup 2 (n=6), betain tedavisi yapılan grup 3 (AF64A betain, n=6) ve piperin tedavisi yapılan grup 4 (AF64A piperin, n=6). Hipokampus dokusunda mitojenle aktieşmiş protein kinaz-1(MAPK-1) mRNA düzeyi, karaciğer ve kan serum örneklerinde Malondialdehit (MDA) düzeyleri ile karaciğer ve eritrosit örneklerinde redükte glutatyon (GSH) düzeyleri araştırılmıştır. İlaveten, morris su labirent testi kullanılarak davranışsal yönden kaynaklanan farklılıklar süre açısından belirlenmiştir. BULGULAR: Karaciğer ve eritrositlerdeki en yüksek GSH düzeyleri piperin uygulanan grup 4’de belirlenmiştir (p

THE EFFECT OF BETAINE AND PIPERINE ON RATS WITH CREATED ALZHEIMER- LIKE DEMENTIA BY AF64A

OBJECTIVE: The great majority of dementia patients (about 60- 70%) suer from Alzheimer disease (AD). The distinctive pathological signs of AD are senile plaques (SPs), neurofibrillary tangles (NFTS), synaptic loss and neurodegeneration. In this study; it is aimed to determine the damage caused by Acetylcholine Mustard Aziridin Ion (AF64A), which induces neurological anomalies, and the therapeutic eect of antioxidant piperine and betaine. MATERIAL AND METHODS: In this study; 24 Sprague-Dawley male rats were used and 4 groups were formed: Group 1 consisting of healthy rats (control, n = 6); Group 2 (n = 6) with experimental dementia induced by AF64A, group 3 (AF64A betaine, n = 6) treated with betaine and 4 (AF64A piperine, n = 6) treated with piperine. The mRNA levels of mitogen activated protein kinase-1 (MAPK-1) in hippocampus tissue, Malondialdehyde (MDA) levels in liver and blood serum samples and reduced glutathione (GSH) levels in liver and erythrocyte samples were investigated. In addition, behavioral dierences were determined in terms of duration using the morris water maze test. RESULTS: The highest GSH levels in liver and erythrocytes were determined in piperine-treated group 4 (p

___

1. Kidd PM. Alzheimer’s Disease, Amnestic Mild Cognitive Impairment, and Age-Associated Memory Impairment: Current Understanding and Progress Toward Integrative Prevention. Altern Med Rev. 2008; 13(2): 85-115.

2. Serý O, Povová J, Míšek I, Pešák L, Janout V. Molecular mechanisms of neuropathologicalchanges in Alzheimer's disease: a review. Folia Neuropathol. 2013; 51(1):1-9.

3. Ferrer I. Defining Alzheimer as a common age-related neurodegenerative process not inevitably leading to dementia. Prog Neurobiol. 2012; 97: 38–51.

4. Fargo K, Bleiler L. Alzheimer’s Association Report 2014 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia. 2014; 10 (2014): 47-92.

5. Ferreira D, Perestelo-pérez L, Westman E, Wahlund LO, Sarría A, Serrano-aguılar P. Meta-Review of CSF Core Biomarkers in Alzheimer'sDisease: The State-of-the-Artafter the New Revised Diagnostic Criteria. Front Aging Neurosci. 2014; 6: 47.

6. Blennow K, Leon MJD, Zetterberg H. Alzheimer’s disease. Lancet. 2006; 368: 387–403.

7. Schellenberg GD, Montine TJ. The genetics and neuropathology of Alzheimer’s disease. Acta Neuropathol. 2012; 124: 305–323.

8. Munoz L, Ammit AJ. Targeting p38 MAPK pathway for the treatment of Alzheimer's disease. Neuropharmacol. 2010; 58(3): 561–568.

9. Pimplikar SW. Neuroinammation in Alzheimer's disease: from pathogenesis to a therapeutic target. J Clin Immunol. 2014; 34(1): 64-69. DOI 10. 1007/ s10875-014- 0032-5.

10. Hanın I. The AF64A Model of cholınergic hypofunctıon: An Update. Life Sci. 1996; 58(22): 1955-1964.

11. Hıramatsu M, Yamatsu T, Kameyama T, Nabeshima T. Eects of repeated administration of (-)nicotine on AF64A-induced learning and memory impairment in rats. J Neural Transm. 2002; 109: 361–375.

12. Rose M, Dudas B, Cornelli U, Hanin I. Glycosaminoglycan C3 protects against AF64A-induced cholinotoxicity in a dose-dependent and time-dependent manner. Brain Research. 2004; 1015: 96–102.

13. Obeid R, Herrmann W. Homocysteine and lipids: S-Adenosyl methionine as a key intermediate. FEBS Letters. 2009; 583: 1215–1225.

14. Zhang Y, Zhu T, Wang L, Pan Y-H, Zhang S. Homocysteine Homeostasis and Betaine-Homocysteine S-Methyltransferase Expression in the Brain of Hibernating Bats. PLoS ONE. 2013; 8(12): e85632.

15. Lawson-yuen A, Levy HL. The use of betaine in the treatment of elevated homocysteine. Mol Genet Metab. 2006; 88: 201–207.

16. Srinivasan K. Black Pepper and its Pungent Principle-Piperine: A Review of Diverse Physiological Eects. Crit Rev Food Sci Nutr. 2007; 47(8): 735-748.

17. Moghadamnıa AA, Zangoorı V, Zargar-nattaj SS, Tayebı P, Moghadamnıa Y, Jorsarae SGA. Eect of breastfeeding piperine on the learning of ospring mice: interaction with caeine and diazepam. J Exp Pharmacol. 2010; 2010(2): 111–120.

18. Butt MS, Pasha I, Sultan MT, Randhawa MA, Saeed F, Ahmed W. Black pepper and health claims: A comprehensive treatise. Crit Rev Food Sci Nutr. 2013; 53(9): 875-886.

19. Pfa MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Research. 2001; Vol 29 (9): e45.

20. Gallagher M, Burwell R, & Burchinal MR. Severity of spatial learning impairment in aging: development of a learning index for performance in the Morris water maze. Behav neurosci. 1993; 107(4): 618-626.

21. Arslan S, Ateş E, Atikcan DT, Uyanik E, & Yapar C. Stres Altında Olan Sıçanlarda ve Normal Koşullardaki Sıçanlarda Antidepresan “Fluoksetin Hidroklorür Kullanımının Öğrenme Üzerine Etkileri. Erişim:http://tip.baskent. edu.tr/egitim/mezuniyetoncesi/calismagrp/ogrsmpzsnm13/13.S14.pdf] 2013.

22. Yu L, Wang S, Chen X, Yang H, Li X, Xu Y, et al. Orientin alleviates cognitive deficits and oxidative stress in Aβ1-42-induced mouse model of Alzheimer's disease. Life Sci. 2015; 15(121): 104-9.

23. Pannangrong W1, Wattanathorn J, Muchimapura S, Tiamkao S, Tong-un T. Purple rice berry is neuroprotective and enhances cognition in a rat model of Alzheimer's disease. J Med Food. 2011; 14(7-8): 688-94.

24. Gulyaeva NV, Lazareva NA, Libe ML, Mitrokhina OS, Onufrıev MV, Stepanichev MYu, et al. Oxidative stress in the brain following intraventricular administration of ethylcholine aziridinium (AF64A). Brain Res. 1996; 726(1- 2):174-80.

25. Bachurın S, Oxenkrug G, Lermontova N, Afanasıev A, Beznosko B, Vankin G, et al. N-Acetylserotonin, Melatonin and Their Derivatives Improve Cognition and Protect against -Amyloid-Induced Neurotoxicity. Ann NY Acad Sci. 1999; 890:155-66.

26. Chonpathompikunlert P1, Wattanathorn J, Muchimapura S. Piperine, the main alkaloid of Thai black pepper, protects against neurodegeneration and cognitive impairment in animal model of cognitive deficit like condition of Alzheimer's disease. Food Chem Toxicol. 2010; 48(3): 798-802.

27. Yamada K, Furukawa S, Iwasaki T, Ichitani Y. Nicotine improves AF64A-induced spatial memory deficits in Morris water maze in rats. Neurosci Lett. 2010; 469(1): 88-92.

28. Varga J, Klausz B, Domokos Á, Kálmán S, Pákáskı M, Szűcs S, et al. Increase in Alzheimer’s related markers preceeds memorydisturbances: Studies in vasopressin-deficient Brattleboro rat. Brain Res Bull. 2014; 100: 6-13