Stalnaker’s Hypothesis: A Critical Examination of Hájek’s Counter Argument
Literatürde Stalnaker hipotezi olarak bilinen iddiaya göre, bir şartlıönermenin olasılığı, o önermenin art bileşenin ön bileşeninine şartlı olasılığına eşittir. David Lewis’in 1976 tarihli makalesinden beri birçok felsefeci bu iddianın sadece basit ve sıradan (trivial) olasılık fonksiyonları için geçerli olduğu, diğer daha işlevli (non-trivial) olasılık fonksiyonlarına uygulanamayacağını göstermeye çalışmışlar ve bu hedef doğrultusunda birçok ispat sunmuşlardır. Ancak sıradanlık sonuçları (triviality results) olarak bilinen bu tür ispatların Stalnaker hipotezini tam olarak reddetmeye yeterli olmadığı anlaşılmıştır. Çünkü bu ispatların büyük bir çoğunluğu koşullamanın kapalılığı (closure of conditionalization) gibi tartışmalı olan varsayımlara dayanmaktadır. Literatürde tartışmalı herhangi bir varsayıma dayalı olmadığı iddia edilen ve sıklıkla gönderme yapılan bir başka argüman daha mevcuttur. Alan Hájek’in 1989 tarihli makalesinde olmayana ergi metodu ile geliştirdiği bu argüman, herhangi tartışmalı bir varsayıma dayanmadan, Stalnaker hipotezinin doğrudan çelişkiye neden olduğunu göstermektedir. Bu makalede Hájek’in argümanının geçerliliği detaylı olarak incelenmekte ve sonuçta söz konusu argümanın petitio principii çıkarsama hatasını barındırdığı ve bu sebeple de geçerli olmadığı tespit edilmektedir. Pozitif katkı olarak ise bu varılan tespitin Stalnaker hipotezinin analitik ve ampirik değerlendirmeleri arasında var olan uyuşmazlığın giderilmesinde bir adım daha ileri gitmemizi sağladığı iddia edilmektidir.
Stalnaker’s Hypothesis: A Critical Examination of Hájek’s Counter Argument
According to what is known as Stalnaker’s hypothesis, the probability of a conditional statement is equal to the conditional probability of the statement’s consequent given the statement’s antecedent. Starting with David Lewis, many have attempted to show that this hypothesis cannot be true for non-trivial probability functions. These attempts, which are known as the triviality results, cannot refute the hypothesis conclusively, because the triviality results usually rest on controversial assumptions such as the closure of conditionalization. In addition to the triviality results, there is one often cited argument against Stalnaker’s hypothesis that does not seem to rest on a controversial assumption. The argument is Alan Hájek’s 1989 reductio argument, which purportedly shows that Stalnaker’s hypothesis leads to outright contradiction. In this paper, I critically evaluate Hajek’s reductio argument and show that it is not a valid argument. His argument is simply an instance of the petitio principii fallacy. On the positive side, I argue that my critical evaluation of Hajek’s argument brings us one step closer to the reconciliation of the analytical and empirical examinations of Stalnaker’s hypothesis.
___
- Busemeyer, J.R., & Bruza, P.D (2012). Quantum Models of Cognition and Decision. Cambridge University Press: Cambridge, UK.
- Douven, I. & Dietz, R. (2011). A puzzle About Stalnaker’s hypothesis. Topoi, 30, 31-37.
- Döring, F. (1994). On the probabilities of conditionals. Philosophical Review, 103, 689-699.
- Evans, J.St.B.T., Handley, S.J., & Over, D.E. (2003). Conditionals and conditional probability. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 321-355.
- Evans, J.St.B.T., & Over, D.E. (2004). If. Oxford University Press: Oxford, UK.
- Hájek, A. (1989). Probabilities of conditionals—revisited. Journal of Philosophical Logic, 18, 423-428.
- Hájek, A. (1994). Triviality on the cheap?. In: Eells, E., Skyrms, B. (eds.) Probability and Conditionals. Cambridge University Press: Cambridge, UK, pp. 113-140.
- Hájek, A. (2011). Triviality pursuit. Topoi, 30, 3-15.
- Hadjichristidis, C., Stevenson, R.J., Over, D.E., Sloman, S.A., Evans, J.St.B.T., & Feeney, A. (2001) On the evaluation of ‘if p then q’ conditionals. In: Moore, J.D., Stenning, K. (eds.) Proceedings of the 23rd Annual Meeting of the Cognitive Science Society. Edinburgh, pp. 381-386.
- Lewis, D.K. (1976). Probabilities of conditionals and conditional probabilities. Philosophical Review, 85, 297-315.
- Lewis, D.K. (1986). Probabilities of conditionals and conditional probabilities II. Philosophical Review, 95, 581-589.
- Oberauer, K., & Wilhelm, O. (2003). The meaning(s) of conditionals: conditional probabilities, mental models and personal utilities. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 688-693.
- Over, D.E., & Evans, J.St.B.T. (2003). The probability of conditionals: the psychological evidence. Mind and Language, 18, 340-358.
- Over, D.E., Hadjichristidis, C., Evans, J.St.B.T., Handley, S.J., & Sloman, S.A. (2007). The probability of causal conditionals. Cognitive Psychology, 54, 62-97.
- Stalnaker, R. (1968). A theory of conditionals. In: Rescher, N. (ed.) Studies in Logical Theory (American Philosophical Quarterly Monograph Series, No. 2). Blackwell, Oxford, pp. 98-112.
- Tversky, A. & Koehler, D.J. (1983) “Extensional versus intuitive reasoning: the conjunctive fallacy in probability judgment”. Psychological Review, 90, 293-315.
- Van Fraassen, B. (1976) “Probabilities of conditionals”. In Harper, W.L. and Hooker, C.A. (eds.) Foundations of Probability Theory, Statistical Inference and Statistical Theories of Science, Vol. I. Reidel: Dordrecht: pp. 261-308.
- Van Fraassen, B. (1989) “Rationality does not require conditionalization”. In Ullmann-Margalit, E. (ed.) The Israel Colloquium: Studies in the History, Philosophy and Sociology of Science, Vol. 5. Kluwer Academic Publishers: Dordrecht.