Soğuk İklimde Dış Mekân Konfor Koşullarını İyileştirme Önerileri: Erzurum

Kentsel dış mekânların başarılı bir şekilde kullanılması termal konfor seviyelerinin yüksekliğiyle ilgilidir. Özellikle soğuk iklimlerde açık kamusal alanların tasarımı, kentlilerin bu alanlarda daha fazla vakit geçirebilmeleri için önemlidir. Kış güneşini alan, soğuk rüzgârlardan korunaklı ve mekân kurgusu ile ilgi uyandıran alanlarda dış mekân kullanım süresi artmaktadır. Bu doğrultuda çalışmanın amacı, Erzurum’un en işlek caddesi üzerinde bulunan 4 farklı kamusal alanın soğuk iklim koşullarıyla uyumluluğunun mikro-iklim simülasyonları yoluyla test edilmesidir. Bu süreçte alanların güneşe erişim, rüzgâr kontrolü, kar yönetimi ve bitki örtüsü dağılımındaki mevcut durumları incelenmiştir. Haritalarının üretilmesi ve değerlendirilmesi sürecinde ENVI-met yazılımı kullanılmıştır. Simülasyon sonuçları ve yazından elde edilen teorik bilgilerin bütüncül olarak kullanımıyla, dış mekân konforunun kış aylarında 0.5°C ile 1oC’ye kadar arttırılabileceği tespit edilmiştir. Sonuçlar paydaşlara dış mekân çalışma alanlarında termal konforu iyileştirmek ve sürdürülebilir şehirler geliştirmek için daha iyi yönergeler sağlanabileceğini göstermiştir.

Recommendations for the Improvement of Outdoor Comfort Conditions in Cold Climate: Erzurum

The intensive use of urban outdoor spaces in cities is related to high levels of thermal comfort. Especially in cold climates, the design of public spaces is important for the residents of the cities to spend more time in these areas. The duration of outdoor use increases in areas that receive the winter sun, are sheltered from cold winds and are attractive with their spatial organization. In this direction, the aim of this study is to test the compatibility of 4 different public spaces on the busiest street of Erzurum with cold climate conditions through micro-climate simulations. In this process, the current conditions of the areas were analyzed in terms of solar access, wind control, snow management and vegetation distribution. ENVI-met software was used to produce and evaluate the maps. With the integrated use of simulation results and theoretical knowledge, it was determined that outdoor comfort can be increased by 0.5°C to 1oC in winter. The results provide guidelines to stakeholders to improve thermal comfort in outdoor workspaces and develop sustainable cities.

___

  • Borve, A. (1987). The design and function of single buildings and building clusters in harsh, cold climates. Energy and Buildings, 4(1), 67–70. https://doi.org/10.1016/0378-7788(82) 90019-6
  • Chatzidimitriou, A. ve Yannas, S. (2016). Microclimate design for open spaces: Ranking urban design effects on pedestrian thermal comfort in summer. Sustainable Cities and Society, 26, 27–47. https://doi.org/10.1016/j.scs. 2016.05.004
  • Dursun, D., Yavaş, M. (2015). Climate-Sensitive Urban Design in Cold Climate Zone: The City of Erzurum, Turkey. International Review for Spatial Planning and Sustainable Development, 3(1), 17-38.
  • Dursun, D., Yavaş, M. (2016). Urbanization and the Use of Climate Knowledge in Erzurum, Turkey. Procedia Engineering, 169. https://doi.org/10.1016/ j.proeng.2016.10.040
  • Dursun, D., Yavaş, M., Yılmaz, S. (2020). Microclimate Assessment of Design Proposals for Public Space in Cold Climate Zone: Case of Yakutiye Square. Megaron; 15(2):321-331.
  • Ebrahimabadi, S. (2015). Outdoor Comfort in Cold Climates : Integrating Microclimate Factors in Urban Design. Luleå Teknoloji Üniversitesi, Doktora Tezi.
  • Emmanuel, R. (2005). Thermal comfort implications of urbanization in a warm-humid city: the Colombo Metropolitan Region (CMR), Sri Lanka. Building and Environment, 40(12), 1591–1601. https://doi.org/https://doi.org/10.1016/j. buildenv.2004.12.004
  • Erskine, R., & Collymore, P. (1994). The Architecture of Ralph Erskine. Academy Editions.
  • Golany, G. S. (1996). Urban Design Morphology and Thermal Performance. Atmospheric Environment, 30(3), 455–465. https://doi.org/10.1016/1352-2310(95)00266-9
  • Jeong, Y., Lee, G. ve Kim, S. (2015). Analysis of the Relation of Local Temperature to the Natural Environment, Land Use and Land Coverage of Neighborhoods. Journal of Asian Architecture and Building Engineering, 14(1), 33–40. https://doi.org/10.3130/jaabe.14.33
  • Johansson, E., Spangenberg, J., Gouvêa, M. L., & Freitas, E. D. (2013). Scale-integrated atmospheric simulations to assess thermal comfort in different urban tissues in the warm humid summer of São Paulo, Brazil. Urban Climate. https://doi.org/10.1016/j.uclim.2013.08.003
  • Kantamaneni, R., Adams, G., Bamesberger, L., Allwine, E., Westberg, H., Lamb, B., Claiborn, C. (1996). The measurement of roadway PM10 emission rates using atmospheric tracer ratio techniques. Atmospheric Environment, 30(24), 4209–4223. https://doi.org/https://doi.org/10.1016/1352-2310(96)00131-8
  • Katzschner, L. (2004). Open Space Design Strategies Based on Thermal Comfort Analysis. PLEA, 1, 47–52.
  • Matus, V. (1988). Design for northern climates. Cold-climate planning and environmental design. Retrieved from https://www.osti.gov/servlets/purl/ 6718221
  • Matzarakis A, Mayer H (1996) Another Kind of Environmental Stress: Thermal Stress. WHO Colloborating Centre for Air Quality Management and Air Pollution Control. NEWSLETTERS18: 7–10.
  • Mills, G. (1999). Urban climatology and urban design. ICB-ICUC, 99, 15th. 8-12 November;1999. Sydney, Australia, Macquarie University, Paper No.ICUC6.2,1999.
  • Mutlu, E., Yılmaz, S., Yılmaz, H. ve Mutlu, B. (2018). Analysis of Urban Settlement Unit By Envi-Met According To Different Aspects In Cold Regions. 6th Annual International Conference on Architecture and Civil Engineering, 519. Singapore.
  • Müller, N., Kuttler, W., & Barlag, A. B. (2014). Counteracting urban climate change: adaptation measures and their effect on thermal comfort. Theoretical and applied climatology, 115, 243-257.
  • O’Malley, C., Piroozfar, P., Farr, E. R. P., & Pomponi, F. (2015). Urban Heat Island (UHI) mitigating strategies: A case-based comparative analysis. Sustainable Cities and Society. https://doi.org/10.1016/j.scs.2015.05.009
  • Pressman, N. ve Zepic, X. (1986). Planning in cold climates: a critical overview of Canadian settlement patterns and policies. The Institute of Urban Studies.
  • Pressman, N. (1995a). Northern cityscape: Linking design to climate. Winter Cities Association.
  • Pressman, N. (1995b). Urban design: The northern dimension. In C. Charette (Ed.), Issues in Canadian Urban Design (pp. 221–267). The Institute of Urban Studies.
  • Pressman, N. (2004). Shaping Cities for Winter. Climatic Comfort and Sustainable Design. Prince George, Winter Cities Associatio (ISBN 0-9698761-1-4). In Cahiers de géographie du Québec (Vol. 48). https://doi.org/10.7202/011810ar
  • Scherer, D., Fehrenbach, U., Beha, H. D., & Parlow, E. (1999). Improved concepts and methods in analysis and evaluation of the urban climate for optimizing urban planning processes. Atmospheric Environment, 33(24–25), 4185–4193. https://doi.org/10.1016/S1352-2310(99)00161-2
  • Shah, R., Pandit, R.K., Gaur, M.K. (2022). Urban physics and outdoor thermal comfort for sustainable street canyons using ANN models for composite climate, Alex. Eng. J. 61 (2022) 10871–10896,
  • Shashua-Bar, L., Pearlmutter, D. ve Erell, E. (2011). The influence of trees and grass on outdoor thermal comfort in a hot-arid environment. International Journal of Climatology, 31(10), 1498–1506. https://doi.org/10.1002/joc.2177
  • Trlicik, J. (2015). Microclimate in Cold Climates : A Study of a Neighbourhood Park in Kiruna Focusing on Sun and Wind. Retrieved from http://ltu.diva-portal.org/smash/get/diva2:1031623/FULLTEXT02.pdf
  • Wang, Y., Akbari, H. ve Chen, B. (2016). Urban Geometry and Environmental Urban Policy Development. Procedia Engineering. https://doi.org/10.1016/j.proeng. 2016.10.038
  • Westerberg, U. ve Glaumann, M. (1990). Design criteria for solar access and wind shelter in the outdoor environment. Energy and Buildings, 15(3), 425–431. https://doi.org/https://doi.org/10.1016/0378-7788(90)90017-D
  • Winter City of Edmonton. (2013). For the love of winter: WinterCity Strategy implementation plan. 1–52. Retrieved from https://www.edmonton.ca/city_ government/initiatives_innovation/wintercity-strategy.aspx
  • Yavaş, M. (2019). İklim Duyarlı Kent Planlama Stratejileri: Erzurum Kenti Örneği. Doktora Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü. Erzurum.
  • Yavaş, M., Yılmaz, S. (2019). Soğuk İklim Bölgesinde Kentsel Mikro İklimin Değerlendirilmesi: Erzurum Kentsel Dönüşüm Alanı Örneği. Artium, 17 (2), 552-562.
  • Yavaş, M., Yılmaz, S. (2020). İklim Duyarlı Kentsel Tasarım İlkeleri: Erzurum Kenti Örneği. Planlama, 30 (2), 155-172.
  • Yilmaz, S., Toy, S. ve Yilmaz, H. (2007). Human thermal comfort over three different land surfaces during summer in the city of Erzurum, Turkey. Atmósfera, Vol. 20, pp. 289–297.
  • Yılmaz, S., Sezen, I., Sarı, E., (2021a). The relationships between ecological urbanization, green areas, and air pollution in Erzurum/Turkey. Environmental and Ecological Statistics (2021) 28:733–759.
  • Yılmaz, S., Mutlu, B., Aksu, A., Mutlu, E., Qaid, A. (2021b). Street design scenarios using vegetation for sustainable thermal comfort in Erzurum, Turkey. Environmental Science and Pollution Research (2021) 28:3672–3693.
  • Yılmaz, S., Külekçi, E., Mutlu, B., Sezen, I. (2021c). Analysis of winter thermal comfort conditions: street scenarios using ENVI-met model. Environmental Science and Pollution Research (2021) 28:63837–63859.
  • Yılmaz, S., Irmak, M. A., Qaid, A. (2022). Assessing the effects of different urban landscapes and built environment. Building and Environment 219 (2022) 109210.
  • Zhang, L., Zhan, Q. ve Lan, Y. (2018). Effects of the tree distribution and species on outdoor environment conditions in a hot summer and cold winter zone: a case study in Wuhan residential quarters. Building Environment 130:27–39.