Toros Sediri (Cedrus libani) kabuk taneninin fenolik bileşimi

Çalışmanın amacı: Bu çalışma kapsamında ülkemizde doğal olarak yetişen Toros sediri (Cedrus libani A. Rich.) ağaçlarının üretim kesimi sonucunda ortaya çıkan atık kabuklarından tanen ekstraksiyonu gerçekleştirilmiştir. Sedir kabuk taneni fenolik bileşimi analitik yöntemler ve FTIR analizi ile ortaya konulmuştur.Çalışma alanı: Atık ağaç kabuklarından tanen eldesi, ekstraktın fenolik bileşik karakterizasyonu ve endüstriyel kullanım olanaklarının belirlenmesidir.Materyal ve Yöntem: Adana bölgesinden temin edilen sedir kabuğu örnekleri, 1:8 kabuk çözücü oranında, 70°C’de 1 saat sıcak suda ekstrakte edilmiştir. Ekstrakt çözeltilerinde verim, pH ve stiasny sayısı değerleri belirlenmiştir. Ardından elde edilen tanenin fenolik bileşimi toplam fenol tayini, bütanol:HCl yöntemi, DNS indirgen şeker tayini ve FTIR analizi ile incelenmiştir. Sonuçlar: Ekstraksiyon sonucunda % 8.99 verim ve 28.85 stiasny sayısı değeri belirlenmiştir. Toplam fenol tayinini sonuçlarına göre eter fazı 15.02 mg/g ve su fazı 27.77 mg/g; bütanol HCl yöntemiyle 7.61 mg/g proantosiyanidin ve DNS indirgen şeker tayini sonucunda 41.77 mg/g değerleri elde edilmiştir. Tanen örneğinin FTIR spektrumu incelendiğinde kondanse tanenler için karakteristik 1605 cm-1 piki görülmektedir. Araştırma vurguları: Fenolik bileşik analiz metotları ve FTIR analizi ile toros sediri kabuk taneninin kondanse tanen yapıtaşı monomerik flavonoid birimleri içerdiği ortaya konulmuştur.
Anahtar Kelimeler:

Toros Sediri, Kabuk, Tanen, FTIR

Phenolic composition of bark tannin from Taurus Cedar (Cedrus libani)

Aim of study: In this study, tannin extraction from waste barks was performed which occur as a result of logging production of Taurus cedar tree (Cedrus libani A. Rich.)  that grows naturally in our country. The phenolic composition of the cedar bark tannin was introduced by analytical methods and FTIR analysis.Area of study: Extraction of tannin from waste wood bark, characterization of phenolic compound and determination of industrial use possibilities.Material and Methods: The bark sample of Taurus cedar from Adana district was extracted from bark:water ratio of 1:8 (w/w) at 70 °C for 1 hour. Extraction yield, pH and stiasny number values were determined at the extract solution. Then, phenolic composition of the tannin was investigated by total phenol content, butanol:HCl assay, DNS reducing sugar method, and FTIR analysis.Main results: As a result of extraction, tannin yield and stiasny number value were determined 8.99 % and 28.85, respectively. The results of total phenol content were 15.20 mg/g in ether phase and 27.77 aqueous phase. According to butanol-HCl assay, 7.61 mg/g proanthocyanidin content was found and 41.77 mg/g reducing sugar power were assayed by DNS reducing sugar method. FTIR spectra of the tannin was observed that presence of the characteristic peak for condensed tannin at 1605 cm-1. Research highlights: Phenolic compound analysis methods and FTIR analysis revealed that the the bark tannin of taurus cedar contained flavonoid units, which are monomeric building units of condensed tannins.

___

  • F.C., Charrier, B., Bahabri, F. & Ganash, A. (2014). MALDI-TOF Analysis of Aleppo Pine (Pinus halepensis) Bark Tannin, Bioresources, 9(2), 3396-3406.
  • Ait Baddi, G., Antonio Alburquerque, J., Gonzalvez, J., Cegarra, J. & Hafidi, M. (2004). Chemical and spectroscopic analyses of organic matter transformations during composting of olive mill wastes. International Biodeterioration & Biodegradation, 54: 39–44.
  • Albu, M.G., Ghica, M.V., Giurginca, M., Trandafir, V., Popa, L. & Cotrut, C. (2009). Spectral characteristics and antioxidant properties of tannic acid immobilized on collagen drug delivery systems. Revista de Chimie Bucharest, 60: 666–672.
  • Arana, J., Tello Rendon, E., Dona Rodriguez, J.M., Herrera Melian, J.A., Gonzalez Diaz, O. & Perez Pena, J. (2001). Highly concentrated phenolic wastewater treatment by the photo-Fenton reaction, mechanism study by FTIR-ATR. Chemosphere, 44: 1017–1023.
  • Bal, B.C., Bektaş, İ. & Kaymakçı, A. (2012). Toros Sedirinde Genç Odun ve Olgun Odunun Bazı Fiziksel ve Mekanik Özellikleri, KSU Mühendislik Bilimleri Dergisi, 15(2), 17-22.
  • Balaban Uçar, M., Uçar, G., Pizzi, A. & Gönültaş, O. (2013). Characterization of Pinus brutia bark tannin by MALDI-TOF MS and13C NMR, Industrial Crops and Products, 49, 697-704.
  • Başer, K.H.C. & Demirçakmak, B. (1995). The Essential Oil of Taurus Cedar (Cedrus libani A. Rich) Recent Results, Chemistry of Natural Compounds, 31-1.
  • Bisanda, E.T.N., Ogola, W.O. & Tesha, J.V., (2003). Characterization of tannin resin blends for particleboard applications, Cement & Concrete Composites, 25, 593–598.
  • Colthup, N.B. (1964). Infrared spectrometry. In Introduction to Infrared and Raman Spectroscopy. Colthup, N.B., Daly, L.H., and Wiberley, S.E., Eds. Academic Press: New York, pp. 171–213.
  • Edelmann, A. & Lendl, B. (2002). Toward the optical tongue: Flow-through sensing of tannin-protein interactions based on FTIR spectroscopy. Journal of the American Chemical Society, 124: 14741-14747.
  • Feng, S., Cheng, S., Yuan, Z., Leitch, M. & Xu, C. (2013). Valorization of bark for chemicals and materials: A review, Renewable and Sustainable Energy Reviews, 26, 560–578.
  • Fengel, D. & Wegener, G. (1984). Wood Chemistry, Ultrastructure, Reactions, Walter de Gruyter, Berlin New York, 3-11-008481-3.
  • Fernandez, K. & Agosin, E. (2007). Quantitative analysis of red wine tannins using Fourier-transform mid-infrared spectrometry. Journal of Agricultural and Food Chemistry, 55: 7294–7300.
  • Foo, L.Y. (1981). Proanthocyanidins: Gross chemical structures by infrared spectra. Phytochemistry, 20: 1397–1402.
  • Ghitescu, R.E., Volf, I., Carausu, C., Buhlmann, A.M., Gilca, I.A. & Popa, V.I. (2015). Optimization of ultrasound-assisted extraction of polyphenols from spruce wood bark, Ultrasonics Sonochemistry, 22, 535–541.
  • Gönültaş, O. & Uçar, M.B. (2012a). Chemical Composition of Some Commercial Tannins Produced in Turkey, Society of Wood Science and Technology 55th International Convention, Beijing, China, August 27-31.
  • Gönültaş, O. & Balaban Uçar, M. (2012b). Fıstıkçamı (Pinus pinea) kabuğunun tanen bileşimi, KSÜ Doğa Bilimleri Dergisi, Özel Sayı, 80-84.
  • Gönültaş, O. (2013). Doğu Ladini (Picea orientalis) ve Meşe (Quercus spp.) Kabukları Taneninin Biyotutkal Üretiminde Kullanılması, Doktora Tezi, İ.Ü. Fen Bilimleri Enstitüsü, İstanbul.
  • Govindarajan, V.S. & Mathew, A.G. (1965). Anthocyanidins from leucoanthocyanidins, Phytochemistry, 4, 985-988.
  • Hagerman, A.E. (2002). Tannin chemistry, Available from: .
  • Hu, R., Lin, L., Liu, T., Ouyang, P., He, B. & Liu, S. (2008). Reducing sugar content in hemicellolose hydrolysate by DNS method: a revisit, Journal of Biobased Materials and Bioenergy, 2. 156-161.
  • Iswantini, D., Ramdhani, T.H. & Darusman, L.K. (2012). In vitro inhibition of celery (Apium graveolens L.) extract on the activity of xanthine oxidase and determination of its active compound. Indonesian Journal of Chemistry, 12 (3): 247–254.
  • Jahanshaei, S., Tabarsa, T. & Asghari, J. (2012). Eco-friendly tannin-phenol formaldehyde resin for producing wood composites. Pigment & Resin Technology, 41: 296–301.
  • Jensen, J.S., Egebo, M. & Meyer, A.S. (2008). Identification of spectral regions for the quantification of red wine tannins with Fourier transform mid-infrared spectroscopy. Journal of Agricultural and Food Chemistry, 56: 3493–3499.
  • Kamal, S.S.K., Sahoo, P.K., Vimala, J., Premkumar, M., Ram, S., & Durai, L. (2010). A novel green chemical route for synthesis of silver nanoparticles using Camellia sinensis. Acta Chimica Slovenica, 57: 808–812.
  • Kassim, M.J., Hussin, M.H., Achmad, A., Dahon, M.H., Suan, T.K. & Hamdan, H.S. (2011). Determination of total phenols, condensed tannins, flavonoid contents, and antioxidant activity of Uncaria gambir extract. Journal of Pharmaceutical, 22: 50–59.
  • Khanbabaee, K. & Ree, T.V. (2001). Tannins: classification and definition, Natural Product Reports, 18, 641–649.
  • Khedkar, J.K., Gobre, V.V., Pinjari, R.V. & Gejji, S.P. (2010). Electronic structure and normal vibrations in (+)-catechin and (-)-epicatechin encapsulated-cyclodextrin. The Journal of Physical Chemistry A, 114: 7725–7732.
  • Kim, S. & Kim, H.J. (2003). Curing behavior and viscoelastic properties of pine and wattle tannin-based adhesives studied by dynamic mechanical thermal analysis and FT-IR-ATR spectroscopy. Journal of Adhesion Science and Technology, 17: 1369–1383.
  • Kurt, Y., Kaçar, M.S. & Işık, K. (2008). Traditional Tar Production from Cedrus libani A. Rich on the Taurus Mountains in Southern Turkey, Economic Botany, 62(4), pp. 615–620.
  • Miller, G.L. (1959). Use of DNS reagent for determination of reducing sugars, Analytical Chemistry, 31, 426-438.
  • Murugananthan, M., Bhaskar Raju, G., & Prabhakar, S. (2005). Removal of tannins and polyhydroxy phenols by electro-chemical techniques. Journal of Chemical Technology and Biotechnology, 80: 1188–1197.
  • OGM. (2015). Türkiye Orman Varlığı, Ankara.
  • Pastorzy, Z., Mohacsine, I.R., Gorbacheva, G. & Borcsok, Z. (2016). The Utilization of Tree Bark, Bioresources, 11-3.
  • Ping, L., Pizzi, A., Guo, Z.D. & Brosse, N. (2012). Condensed tannins from grape pomace: characterization by FTIR and MALDI TOF and production of environment friendly wood adhesive. Industrial Crops and Products, 40: 13–20.
  • Pizzi, A. (2006). Recent developments in eco-efficient bio-based adhesives for wood bonding: opportunities and issues, Journal of Adhesion Science and Technology, 20. 8: 829-846.
  • Pizzi, A. (2016). Wood Products and Green Chemistry, Annals of Forest Science, 73, 185-203.
  • Pizzi, A. & Mittal, K.L. (2003). Handbook of Adhesive Technology, Second Edition, Revised and Expanded, Marcel Dekker, New York, 0-8247-0986-1.
  • Ricci, A., Olejar, K.J., Parpinello, G.P., Kilmartin, P.A. & Versari, A. (2015). Application of Fourier Transform Infrared (FTIR) Spectroscopy in the Characterization of Tannins, Applied Spectroscopy Reviews, 50:407-442.
  • Robb, C.S., Geldart, S.E., Seelenbinder, J.A. & Brown, P.R. (2002). Analysis of green tea constituents by HPLC-FTIR. Journal of Liquid Chromatography & Related Technologies, 25: 787–801.
  • Saab, A.M., Harb, F.Y. & Koenig, W.A. (2005). Essential oil components in heart wood of Cedrus libani and Cedrus atlantica from Lebanon, Minerva Biotec, 17:159-161.
  • Singleton, V.L. & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents, American Journal of Enology and Viticulture, 16, 144-158.
  • Sirvaityte, J., Siugzdaite, J. & Valeika, V. (2011). Application of commercial essential oils of eucalyptus and lavender as natural preservative for leather tanning industry. Revista de Chimie -Bucharest, 62: 884–893.
  • Socrates, G. (2000). Infrared and Raman Characteristic Group Frequencies: Tables and Charts. 3rd ed. John Wiley & Sons: Chichester, UK.
  • Usta, M. & Kara, Z. (1997). The chemical composition of wood and bark of Cedrus libani A. Rich., Holz als Roh- und Werkstoff, 55, 268.
  • Vazquez, G., Alvarez, J.G., Santos, J., Freire, M.S.& Antorrena, G. (2009). Evaluation of potential applications for chesnut (Castanea sativa) shell and eucalyptus (Eucalyptus globus) bark extracts, Industrial Crops and Products, 29, 364-370.
  • Yaltırık, F. & Efe, A. (2000). Dendroloji Ders Kitabı Gymnospermae Angiospermae, II. Baskı. İstanbul Üniversitesi Yayın No: 4265, Fakülte Yayın No:465.ISBN975-404-594-1.
  • Yazaki, Y. & Hillis, W.E. (1977). Polyphenolic extractives of Pinus radiata bark Holzforschung, 31 (1), 20-25