Inter- and Intra-Specific Variation in Anatomical and Morphological Shapes and Biochemical Ratios of Sun, Intermediate and Shade Leaves from Three Deciduous Tree Species

Daha önceden yayınlanan çalışmamızda, kestane, meşe ve kayın ağaç türlerinin güneş ve gölge yapraklarının biyokimyasal yapılarındaki farklılığın, ölü örtü kütle azalmalarında önemli derecede etkili olduğunu belirlemiştik. Bu türlerin ölü örtü ayrışma oranlarını etkileyen en önemli kimyasal bileşenin lignin olduğu tespit edilmişti. Mikroorganizma faaliyetleri üzerinde önemli bir etkisi bulunan, ayrışması oldukça zor olan dirençli bileşiklerin bir toplamı olarak belirlenen kısmı analiz yöntemi (ADF-sülfürik lignin yöntemi) sonuçları, spesifik biyokimyasal bileşimlerin belirlendiği yöntemlerden (alkalin CuO oxidation ve trifluoroacetic acid (TFA)-hidroliz yöntemi) daha olumlu sonuç vermiştir. Beklenenin aksine başlangıçta hızlı bir ölü örtü ayrışması gösteren ağaç türlerinin, sabit olarak ayrışan ağaç türlerine göre, ilerleyen zaman içinde orman altında daha fazla ölü örtüsüne sahip olması durumunun, aynı türün güneş ve gölge yapraklarının ayrışma sürecinde de meydana geldiği belirlenmiştir. Bu durum, ölü örtünün kimyasal yapısıyla ilişkili olarak açıklanamamıştır. Bu olayın, yaklaşık iki yıl süren laboratuvar koşullarında gerçekleştirilen ölü örtü ayrışma deneyinde altlık olarak kullanılan ölü örtü materyalinin, ayrışmayı gerçekleştiren mantar veya mikroorganizma topluluğunu değiştirmesinden kaynaklandığı varsayılmıştır. Bununla beraber, yayınlanmış çalışmada, üzerinde çalışılan üç türün, güneş, orta ve gölge yapraklarının anatomik ve morfolojik şekil değişimleri ile TFA-karbonhidrat (genel olarak yarı-selülozun şeker bileşikleri) ve lignin fenilpropan türevlerinin (PPDs) birbirleri arasındaki oransal değişimi irdelenmemiş ve ayrışmaya olan etkileri üzerinde durulmamıştır. Oysa birçok araştırmacı tarafından, ligninin fenilpropan türevlerinin bazı oranlarının beyaz çürükçül mantarları tarafından ligninin depolimerizasyonunun bir göstergesi, bazı karbonhidrat türevleri ile birbirine oranının ise bitki ve mikrobiyal kaynaklı karbonhidrat yüzdelerini belirlemede de kullanıldığı bildirilmiştir. Bu çalışmada, güneş, orta ve gölge yaprakların anatomik ve morfolojik şekillerindeki farklılıklar ile biyokimyasal bileşen (lignin ve karbonhidratlar) türevlerinin birbirine oranlarındaki değişikliklerin ölü örtü ayrışma oranları üzerindeki etkilerinin ortaya konulması ve tartışılması amaçlanmıştır. Elde edilen sonuçlardan, başlangıçta hızlı bir ayrışma oranı gösteren ölü örtünün sonradan niçin yavaşladığına dair gelecekte yapılacak ölü örtü ayrışma çalışmalarına ve süreçlerine cevap bulmada yararlanılabilecektir.

Geniş Yapraklı Üç Ağaç Türünün Güneş, Orta ve Gölge Yaprak Kategorilerinin Anatomik ve Morfolojik Şekillerinin ve Biyokimyasal Oranlarının Türler-arası ve Tür-içi Değişimi

Previously we revealed significant differences in biochemical composition of sun and shade leaf litters from chestnut, oak and beech tree species that were related to mass losses. Total lignin of the leaf litters was the dominant variable affecting their decomposition rates. Proximate analysis measured an aggregation of recalcitrant compounds mostly affected microbial activity, rather than a specific biochemical constituent. It was also noted that differences in the decomposition rates of sun and shade leaves within species showed the same anomalous patterns of decomposition described by other researchers, whereby species with rapid initial mass losses had larger residual litter masses than species decomposing slowly at constant rates. We were unable to explain this phenomenon in terms of litter chemistry and suggested that this was an artefact caused by changes in the fungal community within the forest floor material used as an inoculum bed over the 2-year incubation period. In the previous study, we did not consider in detail the inter- and intra-specific variation in anatomical and morphological shapes and biochemical ratios of TFA-carbohydrates (mainly sugar constituents of hemicellulose) and phenylpropanoid derivatives (PPDs) of lignin in sun, intermediate and shade leaves which are taken as an index of lignin depolymerisation by white-rot fungi and also used to assign the proportions of plant- and microbial-derived carbohydrates by several investigators. Here, we revealed and discussed the effects of variation in anatomical and morphological shapes and biochemical ratios on litter decomposition rates. Those results can be used in future studies in order to explain the unknown phenomenon why decomposition rates subsequently decrease in the leaf litters, which initially decompose at higher rates?

Kaynakça

Aber J.D., Melillo J.M. 1980. Litter decomposition: Measuring relative contribution of organic matter and nitrogen to forest soils. Canadian Journal of Botany, 58, 416-421.

Aber J. D., Melillo J. M., McClaugherty C. A. 1990. Predicting long term pattern of mass loss, nitrogen dynamics and soil organic matter formation from fine litter chemistry in temperate forest ecosystems. Canadian Journal of Botany, 68, 2201-2269.

Adler T. 1977. Lignin chemistry-past-present- future. Wood Science and Techology, 11, 169- 218.

Allen S. E. 1989. Chemical Analysis of Ecological Materials. Blackwell Scientific Publications, Oxford.

Ander P., Eriksson E. K., Hui-sheng Yu. 1984. Metabolism of lignin-derived aromatic acids by wood-rotting fungi. Journal of General Microbiology, 130, 63-68.

Anderson J. M. 1973a. The breakdown and decomposition of sweet chestnut (Castenea sativa Mill) and beech (Fagus sylvatica L.) leaf litter in two deciduous woodland soils. I. Breakdown, leaching and decomposition. Oecologia, 12, 251- 274.

Anderson J. M. 1973b. The breakdown and decomposition of sweet chestnut (Castenea sativa Mill) and beech (Fagus sylvatica L.) leaf litter in two deciduous woodland soils. II. Changes in the carbon, nitrogen and polyphenol content, Oecologia, 12, 275-288.

Ashton P. S. M., Berlyn G. P. 1992. Leaf adaptations of Shorea species to sun and shade. The New Phytology, 121, 587-596.

Ashton P. M. S., Berlyn G. P. 1994. A comparison of leaf physiology and anatomy of Quercus (section Erythrobalanus- Fagaceae) species in different light environments. American Journal of Botany, 81 (5), 589-597.

Barbacka M., Johanna H. A., van Konijnenburg-van C. 1998.Sun and shade leaves in two Jurassic species of Pteridosperms. Review of Palaeobotany and Palynology, 103, 209-221.

Berendse F., Berg B., Bosatta E. 1987. The effect of lignin and nitrogen on the decomposition of litter in nutrient-poor ecosystems: a theoretical approach. Canadian Journal of Botany, 65, 1116- 1120.

Berg B., Berg M., Bottner P., Box E., Breymeyer A., Calvo de Anta R., Couteaux M.M., Gallardo A., Escudero A., Kartz W., Maderia M., Malkonen E., Meentemeyer V., Munoz F., Piussi P., Remacle J., Virzo De Santo A. 1993. Litter mass loss rates in pine forests of Europe and Eastern United States: some relationships with climate and litter quality. Biogeochemistry, 20, 127-159.

Berg B., Ekbohm G. 1983. Nitrogen immobilisation in decomposing needle litter at variable carbon: nitrogen ratios. Ecology, 64, 63- 67.

Berg B., Ekbohm G. 1991. Litter mass-loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in Scots pine forest VII. Canadian Journal of Botany. 69, 1449-1456.

Berg B., Ekbohm G., Johansson M.B., McClaughery C., Rutigliano F., Virzo De Santo A. 1996. Some foliar litter types have a maximum limit for decomposition: a synthesis of data from forest systems. Canadian Journal of Botany, 74, 659-672.

Berg B., Ekbohm G., McClaughery C. 1984. Lignin and holocellulose relations during long- term decomposition of some forest litters. Long- term decomposition in a Scots pine forest. IV. Canadian Journal of Botany, 62, 2540-2550.

Berg B., Hannus K., Popoff T., Theander O. 1982. Chances in organic chemical components of needle litter during decomposition. Long-term decomposition in a Scots pine forest I. Canadian Journal of Botany, 60, 1310-1319.

Berg B., McClaughery C., Virzo De Santo A., Johansson Decomposition of litter and soil organic matter- can we distinguish a mechanism for soil organic matter build up?. Scandinavian Journal of Forest Research, 10, 108-119. Ekbohm G. 1995.

Berg B., Tamm C.O. 1991. Decomposition and nutrient dynamics of litter in long-term optimum nutrition experiments. I. Organic matter decomposition in Picea abies needle litter, Scandinavian Journal of Forest Research, 6, 305- 321.

Berg B., Wessen B. 1984. Changes in organic- chemical components and in growth of fungal mycelium in decomposing birch leaf litter as compared to pine needles. Pedobiologia, 26, 285- 298.

Brett C., Waldron K. 1990. Physiology and biochemistry of plant cell walls. Topic in plant physiology. Blach, M. and Chapman, J. (eds), Unwin Hyman, London.

Berg B., Staaf H. 1980. Decomposition rate and chemical charges of Scots pine needle litter. II. Influence of chemical composition, in structure and function of northern coniferous forest, an ecosystem study. Ecological Bulletins, 32, 373- 390.

Cheshire M. V. 1979. Nature and Origin of Carbohydrates in Soils. Academic Press, London.

Crawford R. L. 1981. Lignin biodegradation and transformation. Wiley-interscience, New York.

Entry J.A. Backman C.B. 1995. Influence of carbon and nitrogen on cellulose and lignin degradation in forest soils. Canadian Journal of Forest Research, 25, 1231-1236.

Eschrich W. R., Burchardt R., Essamah S. 1989. The induction of sun and shade leaves of the European beech (Fagus sylvatica L.): anatomical studies. Trees, 3, 1-10.

Faix O., Mozuch M.D., Kirk K. 1985. Degradation of gymnosperm (guaiacyl) vs. angiosperm (syringyl/guaiacyl) lignins by Phanerochaete chrysosporium. Holzforschung, 39, 203-208.

Fery D. F., Pimemtal R. A. 1978. Principal component analysis and factor analysis. In: Colgan P.W. (ed) Quantitative Ethology. John Wiley and Sons, New York, 219-245.

Fogel R., Cromack K. 1977. Effects of habitat and substrate quality on Douglas-Fir litter decomposition in western Oregon. Canadian Journal of Botany, 55, 1632-1640.

Goni M. A., Nelson B., Blanchette R. A., Hedges J. I. 1993. Fungal degradation of wood lignin: Geochemical perspectives from CuO- derived Geochimica et Cosmochimica Acta, 57, 3985- 4002. and monomers. Guggenberger G.., dynamics Composition carbohydrates and lignin degradation products in two coniferous forests, NE-Baviaria F.R.G. Soil Biol Biochem, 26, 19-27. of dissolved

Guggenberger G., Zech W., Thomas R. 1995. Lignin and carbohydrate alteration in particle-size separates of an oxisol under tropical pastures following native savanna. Soil Biology and Biochemistry, 27, 1629-1638.

Heal O. W., Anderson J. W., Swift M. J. 1997. Plant litter quality and decomposition: An historical overview. In Driven by Nature: Plant Litter Quality and Decomposition, eds. G. Cadisch and K. E. Giller, 3-45. CAB International Wallingford, U.K.

Heath G. W., Arnold M. K. 1966. Studies in leaf-litter breakdown. II. Breakdown rate of sun and shade leaves. Pedobiologia, 6, 238-243.

Hedges J. I., Ertel J. R. 1982. Characterisation of lignin by gas capillary chromatography of cupric oxide oxidation products. Anal Chem, 54, 174-178.

Hedges J. I., Blanchette R. A., Weliky K., Devol A. H. 1988. Effects of fungal degradation on the CuO-oxidation products of lignin: a controlled laboratory study. Geochimica et Cosmochimica Acta, 52, 2717-2726.

Hermann W., McGill A.W.B. Dormaar J.F. 1977. Effect of initial chemical composition on decomposition of roots of three grass species. Canadian Journal of Soil Science, 57, 205-215.

Hetherington S. L., Anderson J. M. 1998. A simplified procedure for the characterization of plant lignins by alkaline CuO oxidation. Soil Biol Biochem, 13, 1477-1480.

Highley T. L. 1982. Influence of type and amount of lignin on decay by Coriolus versicolor. Canadian Journal of Forest Research, 12, 435- 438.

Hillis W. E., Swain T.I. 1959. The phenolic constituents of Prunus domestica II. The analysis of tissues of the Victoria plum tree. J Sci Food Agric, 10, 135-144.

Jackson R. C. 1967. Effect of shade on leaf structure of deciduous tree species. Ecology, 48, 498-499.

King H. G. C., Heath G. W. 1967. The chemical analysis of small samples of leaf material and the relationship between the disappearance and composition of leaves. Pedobiology, 7, 192-197.

Kirk T. K., Chang H. M., Lorenz L. F. 1975. Topochemistry of the fungal degradation of lignin in birch wood as related to the distribution of guaiacyl and syringyl units. Wood Science and Technology, 9, 81-86.

Kogel I., Bochter R. 1985. Characterisation of lignin in forest humus layers by high-performance liquid chromatography of cupric oxide oxidation products Soil Biology and Biochemistry, 17, 637- 640.

Kürschner W. M. 1997. The anatomical diversity of recent and fossil leaves of the durmast oak (Quercus petraea Lieblein=Q. pseudocastanea Goeppert) -- implications for their use as biosensors of palaeoatmospheric CO2 levels. Rev. Palaeobot. Palynol. 96, 1-30.

McClaugherty C., Berg B. 1987. Cellulose, lignin and nitrogen concentrations as rate regulating factors in late stages of forest litter decomposition. Pedobiologia, 30, 101-112.

Meetemeyer V. 1978. Macroclimate and lignin control of litter decomposition rates. Ecology, 59, 465-472.

Melillo J. M., Aber J., Muratore J. F. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63, 621- 626.

Melillo J. M., Aber J., Linkens A. E., Ricca A., Fry B., Nadelhoffer K. 1989. Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. In: Clarholm, M. and Bergstrom, L. (eds). Ecology of Arable Lands Kluwer Academic Press, Dordrecht, 53-62.

Murayama S. 1984. Changes in the monosaccharide composition during the decomposition of straw under field conditions. Soil Sci Plant Nutri, 30, 367-381.

Murayama S., Cheshire M.V., Mundie C.M., Sparling G.P., Shepherd H. 1979. Comparison of the contribution to soil organic matter fractions, particularly carbohydrates, made by plant residues and microbial products. Journal of Science, Food and Agriculture, 30, 1025-1034.

Norman J. M., Campbell G. S. 1989. Canopy structure. In: Pearcy RW, Mooney HA, Ehleringer JR, Rundel PM, editors. Plant Physiological Ecology: Field methods and instrumentation, Chapman and Hall, New York, 301-325.

Oades J. M. 1984. Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil, 76, 319-337.

Oquist G., Amderson Jan M., McCaffery S., Chow W.S. 1992. Mechanistic differences in photoinhibition of sun and shade plants. Planta, 188, 422-431.

Raven P. H., Evert R. F., Eichhorn S. E. 1992. Biology of plants. 5th edition, New York.

Rodriguez A., Carnicero A., Perestelo F., de la Fuente G., Milstien O., Falcon, M.A. 1994. Effect of transformation. Applied and Environmental Microbiology, 60, 2971-2976. on lignin

Rollet B. 1990. Leaf Morphology. In: Rollet B, Hogermann Ch, Roth I, editors. Stratification of tropical forests as seen in leaf structure, Part 2. Kluwer, Dordrecht.

Roth I. 1984. Stratification of tropical forest as seen in leaf structure. W. Junk, Boston, 522.

Roth I. 1990. Leaf structure of a Venezuelan cloud forest in relation to microclimate. Encyclopedia of plant anatomy, vol. 14, part 1. Gebruder Borntraeger, Berlin, 244.

Rowland A. P., Roberts, J. D. 1994. Lignin and cellulose fractionation in decomposition studies using Acid-Detergent Fibre methods. Communications in Soil Science and Plant Analysis, 25, 269-277.

Rutigliano F. A., de Santo A.V., Berg B., Alfani A., Fioretto A. 1996. Lignin decomposition in decaying leaves of Fagus sylvatica L. and needles of Abies alba Mill. Soil Biology and Biochemistry, 28, 101-106.

Salisbury F. B., Ross C. W. 1985. Plant Physiology. 3rd ed. Wadsworth Publishing Company. Belmant, California.

Sanger L. J., Cox P., Splatt P., Whelan M. J., Anderson J.M. 1996. Variability in the quality of pinus sylvestris needles and litter from sites with different soil characteristics: Lignin and phenylpropanoid signature. Soil Biol Biochem, 28, 829-835.

Sanger L. J., Cox P., Splatt P., Whelan M. J., Anderson J.M. 1998. Variability in the quality and potential decomposability of pinus sylvestris litter from sites with different soil characteristics: Acid detergent fibre (ADF) and carbohydrate signature. Soil Biol Biochem, 30, 445-461.

Sariyildiz T. 2000. Biochemical and Environmental Controls of Litter Decomposition. PhD, Exeter University, Exeter, United Kingdom. Sariyildiz T. 2015. Effects of tree species and topography on fine and small root decomposition rates of three common tree species (Alnus glutinosa, Picea orientalis and Pinus sylvestris) in Turkey, Forest Ecology and Management, 335, 71-86 .

Sariyildiz T., Anderson J. M. 2003a. Interactions between litter quality, decomposition and soil fertility: a laboratory study, Soil Biology and Biochemistry, 35, 391-399.

Sariyildiz T., Anderson J. M. 2003b. Decomposition of sun and shade leaves from three deciduous tree species: as affected by their chemical composition. Biol Fert Soils, 37:137- 146.

Sariyildiz T., Anderson J. M. 2005. Variation in the chemical composition of green leaves and leaf litters from three deciduous tree species growing on different soil types. For Ecol Manage, 210, 303-319.

Sarıyıldız T., Küçük M. 2005. Kayın (Fagus orientalis Lipsky) ve Ladin (Picea orientalis L.) Ölü Örtülerinin Ayrışma Oranları Üzerinde Orman Gülünün (Rhododendron ponticum L.) Etkisi. G.Ü. Kastamonu Orman Fakültesi Dergisi, 5, 55-69.

Sarıyıldız T., Varan S., Duman A. 2008. Ölü örtü ayrışma oranları üzerinde kimyasal bileşenlerin ve yetişme ortamı özelliklerinin etkisi: Artvin ve Ankara yöresine ait örnek bir çalışma. Kastamonu Orman Fakültesi Dergisi, 8 (2), 109-119.

Sarkanen K. V., Hergert H. L. 1971. Definition and nomenclature. In lignins: Occurrence, formation structure and reactions. Sarkanen KV, Ludwing CH, editors. John Wiley, New York, 43-94.

Seelenfreund D., Lapierre C., Vicuna R. 1990. Production of soluble lignin rich fragments (appl) from wheat lignocellulose by Streptommyces viridosporuc and their partial metabolism by natural bacterial isolates. Journal of Biotechnology, 13, 145-158.

Swift M. J., Heal O. W., Anderson J. M. 1979. Decomposition in Terrestrial Ecosystems. Blackwell Scientific Publications, Oxford. Taylor B. R., Parkinson D., Parsons W.F.J. 1989. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology, 70, 97-104.

Vasudevan N., Mahadevan A. 1991. Degradation of lignin and lignin derivatives by Acinetobacter sp. Journal of Applied Bacteriology, 70, 169-176.

Weier T.E., Stocking C. R., Barbour M. G., Rost T. L. 1982. Botany. 6 th edition. John Wiley and Sons, New York.

Kaynak Göster

800 315

Arşiv
Sayıdaki Diğer Makaleler

Markov Zinciri Modeli Kullanılarak Kahramanmaraş İli İçin Gelecekteki Hidrolojik Kuraklık Olasılıklarının Belirlenmesi

MAHMUT REİS, Hurem DUTAL

Effect of Stocking Rate on Forage Availability and Growth Performance of Goat Kids in Mediterranean Kermes Oak Shrublands

TÜRKAY TÜRKOĞLU, Sultan BEKİROĞLU, AHMET TOLUNAY

Bartın Kent Ormanının Karbon Tutma, Oksijen Üretimi ve Rekreasyonel Açıdan Değerlendirilmesi

BİRSEN DURKAYA, Banu BEKÇİ, TUĞRUL VAROL

Kastamonu Şehir Merkezinde Bulunan Platanus orientalis L. Türü Üzerindeki Yoğunluğunun Araştırılması

İBRAHİM KÜÇÜKBASMACI, Selime ŞAHİN, Gülzade EKER

Pulp and Paper Production from Bitter Orange (Citrus aurantium L.) Woods with Soda-AQ Method

AHMET TUTUŞ, Mustafa ÇİÇEKLER, Nazmiye KUCUKBEY

Doğal Liflerin Otomotiv Sanayinde Kullanımı

AYFER DÖNMEZ ÇAVDAR, SEVDA BORAN TORUN

Genç Odası Mekânı ve İç Donatı Elemanlarının Tasarım Kriterlerinin Belirlenmesi: ODTÜ Biyoloji ve Gıda Mühendisliği Bölümleri Örneği

KUBULAY ÇAĞATAY, NECMİ KAHRAMAN, KEMAL YILDIRIM

Vacsol-Aqua ile Emprenye EdilmişBazı Ağaç Malzemelerin Yüzey Pürüzlülüğü ve Yapışma Direnç Özellikleri

HAKAN KESKİN, H. İsmail KESİK, Fatih TEMEL, Yasemin ÖZTÜRK

Pleurotus ostreatus'un Doğal ve Kültür Formlarının Antimikrobiyal Aktiviteleri ve Mineral Madde İçeriklerinin Belirlenmesi

MUSTAFA SEVİNDİK, HASAN AKGÜL, SELAMİ GÜNAL, MUHİTTİN DOĞAN

Karbon Nanotüp İle Güçlendirilen Ahşap Polimer Nanokompozitlerin Uzun Süreli Su Alma Davranışlarının Belirlenmesi

ALPEREN KAYMAKCI