Doğal Liflerin Otomotiv Sanayinde Kullanımı

Günümüzde otomotiv sanayi yakıt maliyetlerinin düşürülmesi ve CO2 emisyonlarının azaltılması konusunda her geçen gün artan çevresel baskılar ve şirket politikaları ile karşı karşıyadır. Bu tür baskılar kompozit malzemenin var olan çelik ve alüminyum gibi malzemelerin yerine kullanılmasını ön plana çıkartmaktadır. Geleceğin otomobillerini şekillendirecek olan tek malzeme plastik olarak kabul edilmektedir. Bir araçta ortalama plastik kullanımı gelişmiş ülkelerde 120 kg iken, dünya genelinde 105 kg olup bu aracın toplam ağırlığının %10-12'sini teşkil etmektedir. Mühendislik ve ticari plastiklerin kullanımının artmasıyla petrol bazlı yakıta olan bağımlılık da azalmaktadır. Diğer tüm faktörler eşit olduğunda, bu durum ortalama bir otomobilin yakıt tüketimini 150,000 kilometrelik ömürde 750 litre oranında azaltmaktadır. Yapılan hesaplamalara göre tüketimdeki bu azalma, Batı Avrupa'da petrol tüketimini yılda 12 milyon ton ve CO2 emisyonunu ise yılda 30 milyon ton azaltacaktır. Kurumsal ortalama yakıt ekonomisi (CAFE) tahminlerine göre ise bir arabanın ağırlığının %10 oranında azaltılması ile yakıt tüketiminde yaklaşık %6-8 oranında tasarruf sağlanmaktadır. Son yıllarda plastik esaslı kompozit malzemelerin üretiminde doğal lifler; düşük maliyet, düşük yoğunluk, yüksek spesifik direnç ve elastikiyet modülü, kolay yüzey modifikasyonu, kolay temin edilebilmesi, yenilenebilir ve biyo-bozunabilir olmalarından dolayı glass fiber ve karbon lifleri yerine güçlendirici madde olarak kullanımı giderek yaygınlaşmaktadır. Bu yazıda doğal liflerin otomotiv sanayii açısından uygunluğu ve uygulama alanları irdelenmiştir.

A review on the Uses of Natural Fibers in Automotive Industry

Nowadays, automotive industry is facing company policies and environmental pressures to reduce increasing fuel cost and CO2 emission with each passing day. These pressures bring into prominence to use composite materials instead of steel and aluminum etc. The unique material which meets these demands and shapes for future cars is agreed as plastic. The average plastic usage in a car is about 105 kg in the world while 120 kg in the developed countries, which means about 10-12% of total weight of the car. The dependence on petroleum-based fuel also decreases with increasing the use of engineering and commercial plastics. This situation reduces the fuel consumption of 750 liters of an average car having a 150,000 kilometers life when all other factors are equal. Based on this calculation, this reduction in the fuel consumption decreases 12 million tons of petroleum consumption and 30 million tons of CO2 emissions per year in Western Europe. According to the estimates of Corporate Average Fuel Economy (CAFE), it is obtained about 6-8 % of fuel saving in fuel consumption with decreasing 10% of a car weight. In recent years, because of properties such as low cost, low density, high specific resistance and the modulus of elasticity, easily surface modification, easily available, renewable and biodegradable, the utilization of natural fibers as reinforcing materials instead of glass fibers and carbon fibers in the manufacturing of plastic based composite materials is becoming increasingly popular. In this paper, natural fibers are scrutinised with respect to appropriateness of the automotive industry and their applications.

Kaynakça

Alves, C., Ferra~o, P.M.C., Silva, A.J., Reis, L.G., Freitas, M., Rodrigues, L.B., Alves, D.E. 2010. Ecodesign of automotive components making use of natural jute fiber composites. Journal of Cleaner Production,18,313-327.

Anonymous. 2007. Bioplastics in automotive applications. Bioplastics Magazine, 2(1), 14-18.

Ashori, A. 2008.Wood-plastic composites as promising green-composites for automotive ındustries. Bioresource Technology, 99, 4661- 4667.

Aziz, S. H., Ansel, M.P. 2004. The effect of alkalinization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1-polyester resin matrix. Composite Science and Technology, 64, 1219-1230.

Biron, M. 2014. Automobiles push renewable plastic and composite use, Retrieved from SpecialChem.

Bismarck, A., Baltazar, A.. Jimenez, Y., Sarikakis, K. 2006. Green composites as panacea?socio-economic aspects of green materials. Environment Development and Sustainability, 8,445-463.

Bledzki, A. K., Faruk, O., Sperber, V.E. 2006. Cars from bio-fibers. Macromolecular Materials and Engineering, 291, 449-457.

Boran, S. 2016. Mechanical, morphological, and thermal properties of nutshell and microcrystalline cellulose filled high-density polyethylene composites. BioResources, 11(1), 1741-1752

Chen, J., Gardner, D.J. 2008. Dynamic mechanical properties of extruded nylon-wood composites. Polymer Composites, 29(4), 372-379.

Clemons, C. 2002. Wood-plastic composites in The United States:The interfacing of two industries. Forest Products Journal,2,10-18.

Corbiere, N.T., Laban, B.G., Lundquist, L., Leterrier, Y., Manson, J.A.E., Jolliet, O. 2001. Lifecycle assessment of biofibers replacing glass fibers as reinforcement in plastics, resources. Resources, Conservation and Recycling, 33,267-287.

Defra (Department of Environment, Food and Rural Affairs), 2002. Annual Report, Publications,EU, August.

Demirci, B. 2012.Türkiye Otomotiv Plastikleri Sektör Raporu

Donmez Cavdar, A., Kalaycıoğlu, H., Mengeloğlu, F. 2011. Tea mill waste fibers filled thermoplastic composites: The effects of plastic type and fiber loading. Journal Reinforced Plastics and Composites, 30, 833-844.

Donmez Cavdar, A., Kalaycıoğlu, H., Mengeloğlu, F. 2015. Technological properties of thermoplastic composites filled with fire retardant and tea mill waste fiber. Journal of Composite Materials, 50 (12), 1627-1634.

Eckert, C. 2000. Opportunities for Natural Fibers in Plastic Composites, Proceedings of the Progress in Wood Fibre Plastic Composites, Toronto, ON.

Farag, M.M. 2008. Quantitative methods of materials substitution: Application to automotive components. Material Design, 29, 374-380.

Faruk, O. 2009. Cars from Jute and Other Bio- Fibers.

Golebiewski, J., Galeski, A. 2007. Thermal stability of nanoclay polypropylene composites by simultaneous DSC and TGA.Composite Science and Technology, 67, 3442-3447.

Graff, G. 2005. Under-hood Applications of Nylon Accelerate. Retrieved from Omnexus by SpecialChem.

Groner, M. D., George, S. M., McLean, R. S., Carcia, P. F. 2006. Gas diffusion barriers on polymers deposition.Applied Physics Letters,88, 051907. atomic layer

Gupta, M., Lin, Y., Deans, T., Baer, E., Hiltner, A., David, A.S. 2010. Structure and gas barrier properties of poly(propylene-graft-maleic anhydride)/phosphate glass composites prepared by 43(9), 4230-4239.

Heitzmann, L.F., Ferraresi, G., Neis, A., Carvalho, E., Casa, F., Meire, J., Neto, O.P.R. 2001. Aplicaça~o de materiais de fontes renova´veis daimler chrysler of brazil, sımea - simpo´ sio de engenharia automotiva, Sa~o Paulo.

Hill, K., Swiecki, B., Cregger, J. 2012. The Bio-Based Materials Automotive Value Chain, Washington, DC 20585, Center for Automotive Research.

Huigin, W. 2012. Engineering Plastics Sector to See Increase of 10.93%.

Johari, A.P., Mohanty, S., Nayak, S.K., 2016. Cellulose Microfibrils from Natural Fiber Reinforced Biocomposites and its Applications, Chapter 3, Biodegradable and Biobased Polymers for Environmental and Biomedical Applications, Ed. Kalia, S., Averous, L., Scrivener Publishing, 515 sayfa.

Jonoobi, M., Harun, J., Mathew, A.P., Oksman, K. 2010. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid(PLA) prepared by twin screw extrusion. Composite Science and Technology,70(12), 1742.

Joseph, S., Sreekala, J.M.S., Oommen, Z., Koshyc, P., Thomas, S. 2002. A comparison of the formaldehyde composites reinforced with banana fibres and glass fibres. Composite Science and Technology, 62, 1857-1868. of phenol

Joshi, S.V., Drzal, L.T., Mohanty, A.K., Arora, S. 2004. Are natural fiber composites environmentally superior to glass fiber reinforced composites.Composite Part A:Applied Science and Manufacturing, 35(3), 371-376.

Juska, C. 2006. Automotive Plastics Report Card, A Report by the Ecology Center.

Kızıltaş, A., Kızıltaş, E.E., Boran, S., Gardner, D.J. 2013. Micro-and nanocellulose for the automotive applications, micro and nanocellulose for the automotive applications, SPE automotive composites (11-13 September 2013), Conferences&Exhibition (ACCE), USA.

Koronis, G., Silva, A., Fontul, M. 2013. Green composites: A review of adequate materials for automotive applications. Composite Part B: Engineering, 44,120-127.

Kylosov, A.A. 2007. Wood plastic composites. John Wiley&Sons, Inc.,NJ, USA.

Lucintel 2011. Opportunities in Natural Fiber Composites, Las Colinas, USA, http://www.lucintel.com/lucintelbrief/potentialofn aturalfibercomposites-final.pdf

Malnati, P. 2009. ECO Elise Concept: Lean, Speedy and Green.Composites Technology.

Marsh, G. 2003. Next step for automotive materials. Materials Today, 6(4),36-43.

Martin, C.A., Sandler, J.K.W., Shaffer, M.S.P., Schwarz, M.K., Bauhofer, W., Schulte, K., Windle, A.H. 2004. Formation of percolating networks in multi-wall carbon-nanotube-epoxy composites.Composite Science and Technology, 64,2309-2316.

Mathew, A.P., Oksman, K., Sain, M. 2004. Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC).Journal of Applied Polymer Science, 97(5),2014-2025.

Merlini, C., Soldi, V., Barra, G.M.O. 2011. Influence of fiber surface treatment and length on physico-chemical properties of short random banana fiber-reinforced castor oil polyurethane composites. Polymer Testing, 30, 833-840.

Mohanty, A.K., Misra, M., Hinrichsen, G. 2000. Biofibers, biodegradable polymers and biocomposites: An overview.Macromolecular Materials and Engineering,276/277(1), 1-24.

Mohanty, A.K., Mısra, M., Drzal, D.T. 2005.Natural fibers, biopolymers, and biocomposites: An Introduction. In: Mohanty AK, Misra M, Drzal LT, Selke SE, Harte BR, Hinrichsen G, editors. Natural Fibers, Biopolymers, and Biocomposites, CRC.

Mothé, C.G., Araújo, C.R., Wang, S.H. 2009. Thermal and mechanicals characteristics of polyurethane/curaua fiber composites. Journal of Thermal Analysis and Calorimetry, 95, 181-185.

Njuguna, J., Wambua, P., Pielichowski, K., Kayvantash, K. 2011. Natural fibre-reinforced polymer composites and nanocomposites for automotive applications. S. Kalia et al. (eds), Cellulose Fibers: Bio-and Nano-Polymer Composites, Springer, New York, p. 661-700.

Özen, E., Kızıltaş, A., Kızıltaş, E.E., Gardner, D.J. 2012.Natural fiber blends filled engineering thermoplastic composites for automobileındustry.Proceedings of SPE Automotive Composites Conference & Exhibition (ACCE), (September 11-13), Troy, MI. Özen, E., Kızıltaş, A., Kızıltaş, E.E., Gardner, J.D. 2013. Natural fiber blend-nylon 6 composites. Polymer Composites, 544-553.

Patel, M., Bastioili, C., Marini, L., Wurdinger, E. 2002. Environmental assessment of bio-based polymers and natural fiber,Netherlands, Utrecht University.

Puglia, D., Biagiotti, J., Kenny, J.M. 2005. A review on natural fibre-based composites- Part II: Application of natural reinforcements in composite materials for automotive industry.Journal of Natural Fibers,1,23-65.

Puglia, D., Kenny, J.M. 2009. Aplications of natural fibre composites. In: S. T. Pothan, Natural Fibre Reinforced Polymer Composites: From Macro to Nanoscale, Old City Publishing, Inc, Philadelphia, p. 523-536.

Santos, P.A., Giriolli, J.C., Amarasekera, J., Moraes, G. 2008. Natural fibers plastic composites in automotive applications. SPE Automotive Composites Conference & Exhibition Troy, MI, USA, p. 1-9.

Sardar, J., Bandopadhya, D. 2013. Processing, fabrication and ınvestigation of thermal characteristics of portland pozzolanic cement filled polypropylene composites. JPPT Plastic Polymer Processing Fabrication and Investigation of Thermal Characteristics Dibakarb.

Sarkar, M., Dana, K., Ghatak, S., Banerjee, A. 2008. Polypropylene-clay composite prepared from Indian bentonite. Bulletin of Materials Science,.31, 23-28.

Sears, K., Jacobson, R., Caulfield, D., Underwood, J. 2001. Reinforcement of engineering thermoplastics with high-purity wood cellulose fibers. Sixth International Conference on Woodfiber-Plastic Composites, Madison, WI , Forest Products Society, p. 27-34.

Seydibeyoğlu, M.O., Oksman, K. 2008. Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Composite Science and Technology, 68, 908-914.

Spoljaric, S., Genovese, A., Shanks, R.A. 2009. Polypropylene-microcrystalline cellulose composites with enhanced compatibility and properties. Composite Part A:Applied Science and Manufacturing, 40, 791-799.

Stewart, R. 2010. automotive composites offer lighter solutions. Journal of Applied Polymer Science, 54,22-28.

Suddell, B., Evans, W. 2005. Natural fiber composites in automotive applications. In: Mohanty AK, Misra M, Drzal TL, editors. Natural Fibers, Biopolymers, and Biocomposites, CRC Press.

Tajvidi, M., Feizmand, M. 2009. Effect of cellulose fiber reinforcement on the temperature dependent mechanical performance of nylon 6. Journal of Applied Polymer Science, 28(22), 2781-2790.

Tetsuka, H., Ebina, T., Nanjo, H., Mizukami, F. 2007. Highly transparent flexible clay films modified with organic polymer: Structural characterization and intercalation properties.Journal of Materials Chemistry,17,3545-3550.

Thomas, G.S. 2000. Renewable materials for aotomotive applications. Daimler-Chrysler AG, Stutgart.

Trost, B.M. 2002. On inventing reactions for atom economy. Accounts of Chemical Research, 35(9), 695-705.

URL-1. 2011.http://www.mitsubishimotors.com/publish/pressrelease_en/corporate/20 11/news/detail0821.html

URL-2. 2008. http://www.toyota.com/about/enviroreport2008/pdfs/2008Report.pdf.

URL-3. 2002. http://www.babybenz.com/portal/a-class-w169/246- daimlerchrysler-uses-a-natural-fiber-componentin-the-exterior-of-the-mercedes-benz-a-class

Xu, X. 2008. Cellulose fiber reinforced nylon 6 or nylon 66 composites. PhD thesis, Georgia Institute of Technology, Atlanta, GE.

Yongxiang, Y., Boom, R., Irion, B., Heerden, D., Kuiper, P.,Wit, H. 2012. Recycling of composite materials. Chemical Engineering and Processing: Process Intensification, 51,53- 68.

Kaynak Göster