Doymuş Suyun Zorlanmış Taşınımda Kaynamasına İlişkin Prandtl Sayısı İyileştirmesi İçeren Yeni Bir Isı Transfer Korelasyonu

Bu çalışmada; suyun, doymuş zorlanmış taşınımda kaynamasına ilişkin ısı transfer katsayısını ITK öngören yeni bir korelasyon sunulmuştur. Korelasyon hem dikey hem de yatay konuma sahip tüpler ve eş-merkezli iç içe geçmiş tüpler için geçerlidir. Çalışmanın temel amacı, Colburn andırımını derivasyona ekleyerek, doymuş zorlanmış taşınımda kaynama için Prandtl sayısının ITK üzerindeki olası etkisini araştırmaktır. Derivasyon, akış rejimine duyarlı olabileceği düşünülen ve bu noktadan sonra A olarak adlandırılan yeni bir boyutsuz sayı ile son bulmuştur. RELAP5/Mod3.3 ısıl-hidrolik sistem analiz kodunun akış haritalama prosedürüyle yapılan karşılaştırma sayesinde, A’nın iki fazlı akış rejimlerine bağlı olduğu konusunda ihtiyatlı bir çıkarım yapılmıştır. Önerilen korelasyonun titizlikle değerlendirilmesi, yeni korelasyonun kabul edilebilir bir doğruluğa sahip olduğunu ve deneysel ITK verilerini, doymuş zorlanmış taşınımda kaynama için 16.6%’lık ortalama sapma ile tahmin ettiğini açıkça ortaya koymaktadır. Ek olarak, Prandtl sayısı etkisinin göz önünde bulundurulmadığı en yakın korelasyona göre ortalama sapmadaki 1.5%’lik iyileşme, Prandtl sayısı iyileştirmesinin ITK üzerindeki olumlu etkisine bağlanmıştır

A new heat transfer correlation for saturated flow boiling of water with Prandtl number improvement

A new correlation predicting the heat transfer coefficient HTC for the saturated flow boiling of water is presented in this study. The correlation is valid for tubes and annuli having both vertical and horizontal orientations. The fundamental aim of the study is to investigate the likely effect of the Prandtl number on the HTC for saturated flow boiling by adding the Colburn analogy into the derivation. The derivation was ended up with a new dimensionless number, hereafter called as A, and it has been suspected that A may be sensitive to the flow regime. Thanks to the comparison carried out with the flow mapping procedure of the RELAP5/Mod3.3 system analysis code, it was made prudent inference that A is dependent on the two-phase flow regimes. Rigorously evaluation of the proposed correlation makes clear that new correlation possesses admissible accuracy and that predicts the experimental HTC data with 16.6% mean deviation for saturated flow boiling. In addition,1.5% improvement in the mean deviation as per the closest correlation in which the Prandtl number effect is not considered is attributed to the positive effect of the Prandtl number improvement on HTC.

___

  • Ağlar, F. 1993. Determination of heat transfer coefficient for saturated flow boiling of water. M. Sc. thesis, Middle East Technical University, Ankara.
  • Barbosa, JR., Hewitt, GF., Richardson, SM. 2002. Forced convective boiling of steam-water in a vertical annulus at high qualities. Exp. Therm. Fluid Sci., 26: 65-75.
  • Bennett, DL., Chen, CJ. 1980. Forced convective boiling in vertical tubes for saturated pure components and binary mixtures. AICHE J., 26: 454-461.
  • Chen, CJ. 1966. Correlation for boiling heat transfer to saturated fluids in convective flow. Ind. Eng. Chem. Process Des. Dev., 5: 322-329.
  • Chen, L., Zhou, P., Huang, R., Han, X., Hua, S., Li, Z., Gao, L. 2018. Experimental investigation on the suppression factor in subcooled boiling flow. Appl. Therm. Eng., 135: 549-558.
  • Cheng, L., Chen, T. 2000. Comparison of six typical correlations for upward flow boiling heat transfer with kerosene in a vertical smooth tube. Heat Transfer Eng., 21: 27-34.
  • de Olivera, JD., Passos, JS., Copetti, JB., Geld, CWM. 2018. Flow boiling heat transfer of propane in 1.0 mm tube. Exp. Therm. Fluid Sci., 96: 243-256.
  • Ferrari, A., Magnini, M., Thome, JR. 2018. Numerical analysis of slug flow boiling in square microchannels. Int. J. Heat Mass Tran., 123: 928-944.
  • Foster, HK., Zuber, N. 1955. Dynamics of vapor bubbles and boiling heat transfer. AIChE J., 1: 531-535.
  • Giustini, G., Ardron, KH., Walker, SP. 2018. Modelling of bubble departure in flow boiling using equilibrium thermodynamics. Int. J. Heat Mass Tran., 122: 1085-1092.
  • Güngör, KE. 1992. Personal Communication.
  • Güngör, KE., Winterton, RSH. 1986. A general correlation for flow boiling in tubes and annuli. Int. J. Heat Mass Tran., 29: 351-358.
  • Güngör, KE., Winterton, RSH. 1987. Simplified general correlation for saturated flow boiling and comparisons of correlations with data. Chem. Eng. Res. Des., 65: 148-156.
  • Hassanpour, M., Vaferi, B., Masoumi, ME. 2018. Estimation of pool boiling heat transfer coefficient of alumina water-based nanofluids by various artificial intelligence (AI) approach. Appl. Therm. Eng., 128: 1208-1222.
  • Information Systems Laboratories Inc. 2001. RELAP5/Mod3.3 Code Manual, Vol:4 Models and Correlations, Idoha Falls, ID. Jige, D., Sagawa, K., Inoue, N. 2017. Effect of tube diameter on boiling heat transfer and flow characteristics of refrigerants R32 in horizontal small-diameter tubes. Int. J. Refrig., 76: 206-218.
  • Kandlikar, S. 1990. A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes. J. Heat Transf., 112: 219-228.
  • Kim, SH., Chu, IC., Choi, MH., Euh, DJ. 2018. Mechanism study of departure of nucleate boiling on forced convective channel flow boiling. Int. J. Heat Mass Tran., 126: 1049-1058.
  • Lu, Q., Chen, D., Li, C., He, X. 2017. Experimental investigation on flow boiling heat transfer in conventional and mini vertical channels, Int. J. Heat Mass Tran., 107: 225-243.
  • Liu, Z., Winterton, RSH. 1991. A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equations. Int. J. Heat Mass Tran., 34: 2759-2766.
  • McCabe, WL, Smith, CJ, Harriott, P. 1986. Unit Operations of Chemical Engineering, McGraw-Hill Book Co., New York.
  • Mohanta, L., Sohag, FA., Cheung, FB., Bajorek, SM., Kelly, JM., Tien, K., Hoxie, CL. 2017. Heat transfer correlation for film boiling in vertical upward flow. Int. J. Heat Mass Tran., 107: 112-122.
  • Prakash, CGJ., Prasanth, R. 2018. Enhanced boiling heat transfer by nano structured surfaces and nanofluids, Renew. Sust. Energy Rev., 82: 4028-4043.
  • Qu, W., Mudawar, I. 2003. Flow boiling heat transfer in twophase micro-channel heat sinks-I. Experimental investigation and assessment of correlation methods. Int. J. Heat Mass Tran., 46: 2755-2771.
  • Raj, S., Pathak, M., han, MK. 2017. An analytical model for predicting growth rate and departure diameter of a bubble in subcooled flow boiling. Int. J. Heat Mass Tran., 109: 470-481.
  • Sarma, PK., Rao, VD., Subrahmanyam, T., Kakac, S., Liu, HT. 2000. A method to predict two-phase pressure drop using condensation heat transfer data. Int. J. Therm. Sci., 39: A17:Y29 184-190.
  • Shah, MM. 1976. A new correlation for heat transfer during boiling flow through pipes. ASHRAE Tran., 82: 66-86.
  • Shah, MM. 1982. Chart correlation for saturated boiling heat transfer: equations and further study. ASHRAE Tran., 88: 185-196.
  • Yen, TH., Kasagi, N., Suzuki, Y. 2003. Forced convective boiling heat transfer in microtubes at low mass and heat fluxes. Int. J. Multiphase. Flow, 29: 1771-1792.
  • Yun, W., Kuanghan, D., Junmei, Wu., Guanghui, S., Suizheng, Q. 2018. The characteristics and correlation of nanofluid flow boiling critical heat flux. Int. J. Heat Mass Tran., 122: 212-221.