The Duffin-Kemmer-Petiau (DKP) Equation Wavefunctions Solutions According to the Virial Theorem for a Spin - one Particle Interacting with a Potential V(r)=k rn

The DKP Eqution is written for a spin-one particle interacting with a potential V(r)=k rn. The written equation is solved for this potential according to the virial theorem. The ten – component wavefunctions are obtained.

Virial Teoremine Göre V(r)=krn Potansiyeli ile Etkileşen Bir Spin-bir Parçacığının Duffin-KemmerPetiau (DKP) Denkleminin Dalgafonksiyonları Çözümleri

DKP Eşitliği, potansiyel V(r)=krn ile etkileşime giren bir spin-parçacık için yazılmıştır. Yazılı denklem bu potansiyel için virial teoremine göre çözülür. On bileşenli dalga fonksiyonları elde edilir.

___

1. Al-Khasawneh, BY., Altaie, MB. 2012. Investigating the Gravitational Properties of Dark Matter. MSc Thesis, Yarmouk University.

2. Arslan, H. 2011. A Unified Equation of Interactions. OJM., 1: 28.

3. Arslan, H. 2013. The Dirac Equation with the Scattered Electron Including Extra Potential Energy Comes from the Virial Theorem. J. Mod. Phys., 4.4.

4. Arslan, H. 2013. The Distances in the Stable Systems Due to the Virial Theorem. Applied Math., 4(4).

5. Arslan, H. 2014. The Dirac Equation According to the Virial Theorem for a Poential V= n krn. Adv. Stud. Theor. Phys., 8(22): 983-989.

6. Arslan, H., Hulaguhanoglu, N. 2015. The Wavefunctions and Energy Eigenvalues of the Schrodinger Equation for Different Potentials Due to the Virial Theorem. Acta Phys. Pol., A, 127(4): 914-916.

7. Arslan, H. 2016. An alternative model of the concentric spherical shell universes according to the virial theorem. Phys. Essays, 29(2): 252-255.

8. Arslan, H., Arslan, MF. 2016. The Duffin‐Kemmer‐Petiau equation (DKP) wavefunctions solutions according to the virial theorem for a spinless boson particle interacting with a potential V (r)= k r n. Phys. Essays, 29(1): 10-13.

9. Bahcall, JN. 1961. Virial Theorem for Many-Electron Dirac Systems. Physical Rev., 124: 923-924.

10. Balinsky, AA., Evans, WD. 1998. On the virial theorem for the relativistic operator of Brown and Ravenhall, and the absence of embedded eigenvalues. Lett. Math. Phys., 44(3): 233-248.

11. Barshalom, A., Oreg, J. 2009. The relativistic virial theorem in plasma EOS calculations. High Energ Dens Phys., 5(3): 196- 203

12. Cardoso, TR., Castro, LB., Castro, AS. 2010. Confining solutions of massive spin-0 bosons by a linear nonminimal vector coupling in the Duffin-Kemmer-Petiau theory. Nucl. Phys. B Proc. Suppl., 199(1): 203-206.

13. Castro, LB., Castro, AS. 2011. Spinless bosons embedded in a vector Duffin–Kemmer–Petiau oscillator. Phys. Lett., A, 375(27) : 2596-2600.

14. Castro, LB., Oliveira, LP. 2014. Remarks on the SpinOne Duffin-Kemmer-Petiau Equation in the Presence of Nonminimal Vector Interactions in Dimensions. Adv. High Energy Phys.

15. Dai, TQ., Cheng, YF. 2009. Bound state solutions of the Klein–Gordon equation with position-dependent mass for the inversely linear potential. Phys. Scr. 79(1): 015007.

16. Goldstein, H. 1959. Classical Mechanics. Addison-Wesley Publishing Company, Inc., Reading.

17. Gurtler, R., Hestenes, D. 2008. Consistency in the formulation of the Dirac, Pauli, and Schroedinger theories. J. Mathematical Phys, 16(3): 573-584.

18. Kalman, G., Canuto, V., Datta, B. 1976. Self-consistency condition and high-density virial theorem in relativistic manyparticle systems. Physical Rev. D, 13: 3493-3494.

19. Kuić, D. 2013. Quantum mechanical virial theorem in systems with translational and rotational symmetry. Int. J. Theor. Phys. 52(4): 1221-1239.

20. Lucha, W., Schöberl, FF. 1990. Relativistic virial theorem. Phys Rev. Lett., 64(23): 2733-2735.

21. March, NH. 1953. The Virial Theorem for Dirac’s Equation. Phys. Rev., 92: 481-482.

22. Nadareishvili, T., Khelashvili A. 2009. Generalization of Hypervirial and Feynman-Hellmann Theorems for Singular Potentials. arXiv preprint arXiv:0907.1824.

23. Namgung, W. 1998. Virial Theorem, Feynman-Hellman Theorem, and Variational Method. JKPS 32:647-650.

24. Nedjadi, Y., Barrett, RC. 1993. On the properties of the Duffin-Kemmer-Petiau equation. J. Phys. G. Nucl. Partic., 19(1): 87.

25. Nedjadi, Y., Barrett, RC. 1994. The Duffin-Kemmer-Petiau oscillator. J. Phys. A: Math. Gen., 27(12): 4301.

26. Rose, ME., Welton, TA. 1952. The virial theorem for a Dirac particle. Phys. Rev., 86(3): 432.

27. Rosicky, F., Mark, F. 1975. The relativistic virial theorem by the elimination method and nonrelativistic approximations to this theorem. J. Phys. B., 8(16): 2581.

28. Ru-Zeng, Z., Wen, Y-H, Qian, J. 2002. The virial theorem in refined Thomas-Fermi-Dirac theory for the interior of atoms in a solid. Chinese Phys. 11.11 :1193-1195.

29. Semay, C. 1993. Virial theorem for two‐body Dirac equation. J. Mathematical Phys. 34(5): 1791-1793.

30. Shabaev, VM. 2002. Virial relations for the Dirac equation and their applications to calculations of H-like atoms. arXiv preprint physics/0211087.

31. Stokes, JD., Dahal,HP., Balatsky, AV., Bedell, KS. 2013. The virial theorem in graphene and other Dirac materials. Philos. Mag. Let., 93(12): 672-679.

32. Thornton, ST., Marion, JB. 2004. Classical Dynamics of Particles and Systems, Thomson Learning, Belmont.

33. Yaşuk, F., Berkdemir, C., Berkdemir, A., Önem, C. 2005. Exact solutions of the Duffin–Kemmer–Petiau equation for the deformed hulthen potential. Phys. Scr., 71(4): 340.

34. Weislinger, E., Olivier, G. 1974. The classical and quantum mechanical virial theorem. Int. J. Quantum Chem., 8(8): 389- 401.

35. Weislinger, E., Olivier, G. 1975. The virial theorem with boundary conditions applications to the harmonic oscillator and to sine‐shaped potentials. Int. J. Quantum Chem. 9(9): 425-433.
Karaelmas Fen ve Mühendislik Dergisi-Cover
  • ISSN: 2146-4987
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2011
  • Yayıncı: ZONGULDAK BÜLENT ECEVİT ÜNİVERSİTESİ