Redoks Polimerizasyonu ile Epoksi Reçine İçeren Poli(GMA-b-EG) Blok Kopolimerinin Sentezi ve Karakterizasyonu

Bu çalışmada, poli(glisidil metakrilat-blok-etilen glikol) [P(GMA-b-EG)] epoksi bazlı blok kopolimer redoks polimerizasyonu ile sentezlendi ve değerlendirildi. Bu amaç için, polietilen glikol (PEG-3000) makrobaşlatıcı kullanılarak glisidil metakrilatın seryum amonyum nitrat [Ce(NH4)2(NO3)6] katalizörü varlığında redoks polimerizasyonu ile epoksi reçine içeren poli(GMA-b-EG) blok kopolimeri sentezlendi. Sentezlenen epoksi bazlı kopolimer FTIR, 1H-NMR, DSC ve SEM gibi spektroskopik yöntemlerle karakterize edildi. Epoksi bazlı kopolimerin moleküler ağırlığı da GPC ile belirlendi. Epoksi içeren kopolimer, nispeten yüksek molekül ağırlığına ve dar molekül ağırlığına dağılımına (dispersity) sahipti. DSC sonucu, epoksi bazlı kopolimerin camsı geçiş sıcaklığı değerinin homopolimerden farklı olarak 28 oC olduğunu göstermiştir. SEM analizi, PEG ve epoksi bazlı kopolimerlerin yüzey morfolojisinin farklı olduğu söylenebilir. Epoksi bazlı kopolimerin 160 °C ve 400 °C gibi iki farklı ayrışma sıcaklığına sahip olduğu TGA analizi ile kanıtlanmıştır.

Synthesis and characterization of the poly(GMA-b-EG) block copolymer containing epoxy-resin by redox polymerization

In this study, poly(glycidyl methacrylate-block-ethylene glycol) [P(GMA-b-EG)] epoxy-based copolymer was synthesized and evaluated by redox polymerization. For this purpose, poly(GMA-b-EG) block copolymer containing epoxy-resin was synthesized by redox polymerization of glycidyl methacrylate using polyethylene glycol (PEG-3000) macroinitiator in the presence of cerium ammonium nitrate [Ce(NH4)2(NO3)6] catalyst. The synthesized epoxy-based copolymer was characterized by FTIR, 1H-NMR, DSC, TGA, and SEM spectroscopic methods. The molecular weight of the epoxy-based copolymer was also determined by GPC. The epoxy-based copolymer has a relatively narrow molecular weight and distribution. The DSC result showed that the glass transition temperature value of the epoxy-based copolymer was 28 oC, different from that of the homopolymer. SEM analysis showed that the surface morphology of PEG and epoxy-based copolymers was different. It has been proven by TGA analysis that the epoxy-based copolymer has two different decomposition temperatures of 160 °C and 400 °C.

___

  • B Hazer., Çakmak İ., Denizligil S., Yağcı Y. (1992). Preparation of multiphase block copolymers by redox polymerization. Angew. Macromol. Chem, 195(1), 121-127.
  • Chen J. (2008). Molecular Recognition in Terms of a Dimensionless Index. 2. Thermodinamic Patterns of Intromolecular Interactions of PEG and Its Alcohol Substrates. Journal of Physical Chemistry, 112(6) 1706-1711.
  • Cakmak I. (1995). Synthesis of block copolymers by redox macro initiators. Macromol Rep. 32(1) 197-206.
  • Çakmak I. (1993). Preparation of multiphase block copolymers by redox polymerization process. 2: Polymerization of acrylonitrile by the manganese(III)-poly(ethylene glycol) redox system. Die Angew. Macromol. Chem. 211(1), 53-60.
  • Göktaş M., Öztürk T., Atalar M.N., Tekeş A.T., Hazer B. (2014). One-Step Synthesis of Triblock Copolymers via Simultaneous Reversible-Addition Fragmentation Chain Transfer (RAFT) and Ring-Opening Polymerization Using a Novel Difunctional Macro-RAFT Agent Based on Polyethylene Glycol. J. Macromol. Sci. Part A-Pure and Appl. Chem. 51(11), 854-863.
  • Göktaş M. (2019). Synthesis and characterization of various block copolymers using PMMA-Br macroinitiator. Chem. Papers, 73(9), 2329–2339,
  • Göktaş M. (2020). Synthesis and characterization of temperature-responsive block copolymers using macromonomeric initiator. Chem. Papers, 74(7), 2297–2307.
  • Göktaş M., Deng G. (2018). Synthesis of Poly(methyl methacrylate)-b-poly(N-isopropylacrylamide) Block Copolymer by Redox Polymerization and Atom Transfer Radical Polymerization. Indones. J. Chem. 18(3), 537–543.
  • Göktaş M., Aykaç C. (2020). Synthesis and characterization of poly(ε-caprolactone)-b-poly(acrylamide) block copolymers. J. Inst. Sci & Tech. 10(2), 1154-1162.
  • Göktaş M., Olgun B. (2019). One-step synthesis and characterization of poly(ԑ-caprolactone)-b-poly(N-isopropylacrylamide) thermo-responsive block copolymers via RAFT and ROP techniques. Polym. Sci. Series B. 61(4), 421–429.
  • Göktaş M. (2019). Synthesis and characterization of poly (styrene-b-methyl methacrylate) block copolymers via ATRP and RAFT. J. Inst. Sci & Tech. 9(1), 139-149.
  • Klimow V.V., Kolyaganova O.V., Bryuzgin E.V., Navrotsky A.V., Novakov İ.A. (2022) Effect of the Composition of Copolymers Based on Glycidyl Methacrylate and Fluoroalkyl Methacrylates on the Free Energy and Lyophilic Properties of the Modified Surface. Polymers, 14, 1960.
  • Kovar J., Navratilova M., Skursky L. (1982) Immobilization of horse liver alcohol dehydrogenase on copolymers of glycidyl methacrylate and ethylene dimethacrylate. Biotechnol. Bioeng. 24, 837–45.
  • Li J., and Kao W. J. (2003). Synthesis of Polyethylene Glycol (PEG) Derivatives and PEGylated-Peptide Biopolymer Conjugates. Biomacromolecules, 4(4), 1055-1067.
  • Liu X., Hou G., Zheng H., Li W. (2022) Preparation of Wool-g-Glycidyl Methacrylate with a Constructed –SH Groups/Ammonium Persulfate Redox System and Characterization. MATERIALS SCIENCE (MEDŽIAGOTYRA), 28 (3).
  • Matt L., Liblikas I., Bonjour O., Jannasch P., Vares L. (2021). Synthesis and anionic polymerization of isosorbide mono-epoxides for linear biobased polyethers. Polym. Chem. 12(41), 5937–5941.
  • May C.A. (1988). Epoxy resins chemistry and technology. New York: Marcel Dekker.
  • Muzammil E. M., Khan A., Stuparu M.C. (2017). Post-polymerization modification reactions of poly(glycidyl methacrylate)s. RSC Adv. 88 (7) 55874–55884.
  • Öztürk T., Göktaş M., Hazer B. (2011). Synthesis and Characterization of Poly(methyl methacrylate-blockethylene glycol-block-methyl methacrylate) Block Copolymers by Reversible Addition-Fragmentation Chain Transfer Polymerization. J. Macromol. Sci. Part A-Pure and Appl. Chem. 48(1), 65-70.
  • Öztürk T., Çakmak İ. (2007). Synthesis of Block Copolymers via Redox Polymerization Process: A Critical Review. Iranian Polym. J. 16(8), 561-581.
  • Öztürk T., Göktaş M., Hazer B. (2010). One-Step Synthesis of Triarm Block Copolymers via Simultaneous Reversible-Addition Fragmentation Chain Transfer and Ring-Opening Polymerization. J. Appl. Polym. Sci. 117(12), 1638–1645.
  • Öztürk T., Kayğın O., Göktaş M., Hazer B. (2016). Synthesis and Characterization of Graft Copolymers Based on Polyepichlorohydrin via Reversible Addition-Fragmentation Chain Transfer Polymerization. J. Macromol. Sci. Part A-Pure and Appl. Chem. 53(6), 362–367.
  • Öztürk T., Yavuz M., Göktaş M., Hazer B. (2016). One-step synthesis of triarm block copolymers by simultaneous atom transfer radical and ring-opening polymerization. Polym. Bull. 73(6), 1497–1513.
  • Öztürk T., Atalar M.N., M Göktaş., B Hazer. (2013). One-Step Synthesis of Block Graft Copolymers via Simultaneous Reversible-Addition Fragmentation Chain Transfer and Ring-Opening Polymerization Using a Novel Macroinitiator. J. Polym. Sci. Part A Polym. Chem. 51(12), 2651–2659.
  • Waly A.İ., Khedr M.A.M., Ali H.M., Ahmed İ.M. (2020) Chemical Functionalization of Cellulose-Poly(Glycidyl- Methacrylate) Graft Copolymer with Two Different Poly Amino Compounds. Egypt J Chem. 63 (7) 2673 – 2682.
  • Wang B., Wang P., He B., Liu S., Ye Q., Zhou F. (2022) Fabrication of ionic liquid-functionalized polystyrene nanospheres via subsurface-initiated atom transfer radical polymerization for anti-fouling application. Progress in Organic Coatings 171, 107044.
  • Wei Wang W., Hutchinson R.A. (2008). PLP/SEC/NMR Study of Free Radical Copolymerization of Styrene and Glycidyl Methacrylate. Macromolecules, 41(23), 9011-9018.
  • Yılmaz S., Coşkun M. (2018). Poly(glycidyl methacrylate-co-styrene): Synthesis, Characterization, Reaction With Aminated MWCNT and Thermal investigation. El-Cezerî Journal of Science and Engineering, 5(2) 537-546.
  • Zhou S. (2003). Biodegradable poly(e-caprolactone)-poly(ethylene glycol) block copolymers: characterization and their use as drug carriers for a controlled delivery system. Biomaterials, 24(20), 3563-3570.