Katı Yakıtların Şişme Özelliklerinin İncelenmesi ve Sıvılaştırılması

Bu çalışmada Edirne Uzunköprü, Edirne Keşan Çanakkale Yeniçırpılar ve Bursa Mustafa Kemal Paşa linyitlerinin şişirilmesine çeşitli parametrelerin etkisi incelenmiştir. Çalışmanın ilk bölümünde, linyitlere şişme işlemleri uygulanmıştır. Şişme ölçümleri ağzı kapalı cam tüplerde 10 ayrı çözücü kullanılarak yapılmıştır. Çözücülerle işlem gören linyit örneklerinin şişme oranları belirlenmiş ve bu oranların çözücünün özelliklerine bağlılığı irdelenmiştir. İkinci bölümde ise orjinal linyit, çeşitli çözücülerle şişirilmiş linyit örnekleri, THF ile soxhlet ekstraksiyonuna tabi tutulmuş ve her bir örnekten elde edilen sıvı ürün verimleri belirlenmiştir. Daha sonra aynı örnekler toluen ile süperkritik koşullarda ekstrakte edilerek sıcaklığın, basıncın ve ön şişirme işleminin ekstrakt verimine etkisi incelenmiştir. THF, TBAH, DMSO, DMF ve EDA gibi çözücülerle şişirilen linyit örneklerinin ekstrakt verimlerinin diğer çözücülerinkinden yüksek olduğu bulunmuştur. Bu çözücülerin ortak özellikleri yapısında N gibi O gibi ortaklanmamış elektron bulunduran atomlara sahip olmalarıdır. Ayrıca donör sayısı – akseptör sayısı farkı büyük ve pozitif olan çözücülerin ekstrakt verimlerinin büyük olmasının linyitlerdeki çapraz bağların çözücü tarafından koparılmasıyla ilişkili olabileceği düşünülmüştür.

Investigation of Swelling Properties and Liquefaction of Solid Fuels

In this study, the effect of various parameters on the swelling of Edirne Uzunköprü, Edirne Keşan Çanakkale Yeniçirpılar and Bursa Mustafa Kemal Paşa lignites was investigated. In the first part of the study, swelling processes were applied to the lignites. Swelling measurements were made in closed glass tubes using 10 different solvents. Swelling ratios of lignite samples treated with solvents were determined and the dependence of these ratios on the properties of the solvent was examined. In the second part, the original lignite samples, swollen with various solvents, were subjected to soxhlet extraction with THF and the liquid product yields obtained from each sample were determined. Then, the same samples were extracted with toluene under supercritical conditions, and the effects of temperature, pressure, and pre-expansion on the extract yield were investigated. Extract yields of lignite samples swollen with solvents such as THF, TBAH, DMSO, DMF, and EDA were found to be higher than those of other solvents. The common features of these solvents are that they have atoms containing unpaired electrons such as N, O, etc. In addition, it was thought that the high extract yields of solvents with a large and positive difference in the number of donors and acceptors may be related to the breaking of the cross-links in the lignites by the solvent.

___

  • Asaro M., and Smith R.M. (2013) in Fossil Energy. Springer, 389-442.
  • Caliskan S. (1992). Effect of Swelling of Lignites on their Solubility. Master Thesis, A.U.F.F. Department of Chemical Engineering.
  • Eaves D. (2004). Handbook of polymer foams. iSmithers Rapra Publishing.
  • Franck H.G. and Stadelhofer J.W. (2012). Industrial aromatic chemistry: raw materials· processes· products. Springer Science & Business Media
  • Gutmann V., Wychera E.J.I. (1966). Coordination reactions in non aqueous solutions-The role of the donor strength. Inorganic and Nuclear Chemistry Letters, 2(9), 257-260.
  • Gür T.M. (2018). Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy & Environmental Science, 11 (10), 2696-2767.
  • Larsen J.W., and Mohammadi M. (1990). Structural changes in coals due to pyridine extraction. Energy Fuels, 4, 107
  • Lee D.H. (2012). Toward the clean production of hydrogen: Competition among renewable energy sources and nuclear power. International Journal of Hydrogen Energy, 37 (20), 15726-15735.
  • Marzec A., Juzwa M., Betlej K. and Sobkowiak M. (1979). Bituminous coal extraction in terms of electron-donor and-acceptor interactions in the solvent/coal system. Fuel Processing Technology, 2(1), 35-44.
  • Mayer U., Gutmann V. and Gerger W. (1975). The acceptor number — A quantitative empirical parameter for the electrophilic properties of solvents. Monatshefte für Chemie / Chemical Monthly, 106(6), 1235-1257.
  • Nishioka M., and Larsen, J.W. (1990). Association of aromatic structures in coals. Energy & Fuels, 4, 100.
  • Peppas N.A., and Lucht L.M. (1984). Macromolecular structure of coals. I. The organic phase of bituminous coals as a macromolecular network. Chemical engineering communications, 30(3-5), 291-310.
  • Song C., and Schobert H.H. (1993). Opportunities for developing specialty chemicals and advanced materials from coals. Fuel Processing Technology, 34 (2), 157-196.
  • Suuberg E. M., Otake Y., Yun Y., Deevi S.C. (1993). Role of moisture in coal structure and the effects of drying upon the accessibility of coal structure. Energy & fuels, 7(3), 384-392.
  • Szeliga J., and Marzec A. (1983). Swelling of coal in relation to solvent electron-donor numbers. Fuel, 62 (10), 1229-1231.
  • Şimşek E. (1990). Effect of Pre-inflating Lignites on their Extraction. Master Thesis, A.Ü.F.F. Department of Chemical Engineering.
  • Wiser R., Bollinger M., Barbose G., Belyeu K., Hand M., Heimiller D., Lew D., Milligan M., Mills A., and Moreno A. (2008). Annual report on US wind power installation, cost, and performance trends: 2006.
  • Xie K., Li W. and Zhao W. (2010). Coal chemical industry and its sustainable development in China. Energy, 35(11), 4349-4355.