Çelik Malzeme Yüzeyinde Farklı Lazer Güçlerinin Etkisinin İncelenmesi

Bu çalışmada, 3 mm kalınlığındaki bir çelik levha üzerinde farklı lazer güçlerinde ve sabit hızda karbondioksit lazer kullanılarak oluklar oluşturulmuştur. Yüzeyler lazer ile işlendikten sonra yüksek çözünürlüklü mikroskop ile yüzeylerin görüntüleri alınmıştır. Olukların erimiş bölge ve ısıdan etkilenen bölge genişlikleri, görüntüler kullanılarak ölçülmüştür. Hata oranını azaltmak için elde edilen oluklar üzerinde 5 farklı bölgeden ölçüm yapılmıştır. Son olarak erimiş bölge ve ısıdan etkilenen bölge genişliklerinin uygulanan lazer gücüne karşı değişimi grafiksel olarak incelenmiştir. Genel olarak lazer gücü ile genişliklerin yavaşlayarak arttığı gözlemlenmiştir. Isıdan Etkilenen Bölge ve Erimiş Bölge genişlikleri aynı oranda değişmiştir. Malzeme yüzeyine aktarılan enerji arttıkça hem Isıdan Etkilenen Bölge hem de eriyik bölge genişliği artmıştır. Uygulanan lazer gücü 40 W ila 115 W arasında incelenmiştir. Lazer gücü 40 W'tan 80 W'a çıkarıldığında Isıdan Etkilenen Bölge Boyutu neredeyse doğrusal olarak artmıştır. Daha yüksek güç değerleri için HAZ boyut artışının daha az olduğu gözlemlenmiştir.

Investigation of the Effects of the Different Laser Powers on the Steel Surface

In this study, grooves were created on a 3 mm thick steel plate by using a carbon dioxide laser at different laser powers at a constant speed. High-resolution images of the laser-processed surfaces were taken with a high-resolution stereo microscope. The molten zone and heat-affected zone widths of the troughs were measured using the images. To reduce the error rate, measurements were made from 5 different regions on the obtained grooves. Finally, the changes in the molten zone and heat-affected zone widths against the applied laser power were examined graphically. As a result, it has been observed that the widths were increasing by laser power with slowing down. Heat Affected Zone and Molten zone widths have changed at the same rate. As the energy transferred to the material surface increases, both the Heat Affected Zone and the molten zone width has increased. The applied laser power has been studied from 40 W to 115 W. Heat Affected Zone Size increased almost linearly when laser power was increased from 40 W to 80 W. It has been observed that the HAZ size increase was less for higher power values.

___

  • Aboulkhair N. T., Maskery I, Tuck C, Ashcroft I.,Everitt N. M., (2016) The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment, Materials Science&Engineering, A667139-146.
  • Adams R. O., (1983) A review of the stainless steel surface,: Journal of Vacuum Science & Technology A 1, 12. Altenberger I., Scholtes B., Martin U., Oettel H. (1999). Cyclic deformation and near surface microstructures of shot peened or deep rolled austenitic stainless steel AISI 304, Material Science and Engineering Technology. (264). (1-16).
  • Ceau G.,Popovici V., Croitoru S., (2010). Researches About the Temperature of The Cutting Edge in Turning of Unalloyed Steel, Scientific Bulletin-University Politehnica of Bucharest, (72) 97-111.
  • Choudhary S.K. and Ganguly S., (2007), Morphology and Segregation in Continuously Cast High Carbon Steel Billets, ISIJ International, Vol. 47 No. 12, pp. 1759–1766
  • Ghaini F. M., Hamedi M.J., Torkamany M.J., Sabbaghzadeh J., (2007) Weld metal microstructural characteristics in pulsed Nd: YAG laser welding, Scripta Materialia, (56) 955-958.
  • Gardner L., (2005), The use of stainless steel in structures, Progress in Structural Engineering and Materials, (7) 45–55.
  • Morozov D Yu.., Chevskaya O. N., Filippov G. A., and Muratov A. N. (2007). Fire-Resistant Structural Steels”, Metallurgist, (5)1, 7–8,.
  • Musfirah A.H, Jaharah A.G., (2012), Magnesium and Aluminum Alloys in Automotive Industry, Journal of Applied Sciences Research, 8(9): 4865-4875
  • Narasimharaju S. R., Wenhan Zeng W., See T. L., Zhu Z.,Scott P.,Jiang X., Lou S., (2022) A comprehensive review on laser powder bed fusion of steels: Processing, microstructure, defects and control methods, mechanical properties, current challenges and future trends, Journal of Manufacturing Processes, 75, 375-414.
  • Rogers C. C., (1979) Adiabatic Plastic deformation, Ann. Rev. Mater. Sci. 9: 283-311
  • Shi X.,, Gu D., Li Y., Dai D., Ge Q., Sun Y., Chen H., (2021) Thermal behavior and fluid dynamics within molten pool during laser inside additive manufacturing of 316L stainless steel coating on inner surface of steel tube, Optics and Laser Technology, (138) 106917.
  • Tabernero V. M. A., Kumar A., Petrov R. H., Monclus M. A., Aldereguia J.M. M., Sabirov I., (2020) The sensitivity of the microstructure and properties to the peak temperature in an ultrafast heat treated low carbon-steel, (776) 1-35.
  • Tabernero, I., Lamikiz A., Martínez S., Ukar E., López de Lacalle L.N. (2012) Modelling of energy attenuation due to powder flow-laser beam interaction during laser cladding process, Journal of Materials Processing Technology, (212) 516-522.
  • Tung C. S. And McMillan M. L., (2004), Automotive tribology overview of current advances and challenges for the future, Tribology International 37 517–536
  • Zarei O., Fesanghary M., Farshi B., Jalili Saffar R., Razfar M.R. (2009). Optimization of multi-pass face-milling via harmony search algorithm, Journal of Material Processing Technology, (209) 2386-2392.