An experimental investigation to study the performance characteristics of heat pipe using aqueous hybrid nanofluids

An experimental investigation to study the performance characteristics of heat pipe using aqueous hybrid nanofluids

The steady-state performance characteristics of a mesh-wick heat pipe were investigated ex- perimentally across a heat load range of 25W-100W incorporating DI water, Al2O3 nanofluids, and Al2O3+GO hybrid nanofluids respectively. All the nano-suspensions were prepared fol-lowing the two-step preparation method. Out of all the prepared Al2O3 nanofluids, 1.0 vol.% Al2O3 nanofluid exhibited the highest reduction in adiabatic vapor temperature. The hybrid combination of 75% Al2O3 +25% GO nanofluid in the heat pipe resulted in a maximum dec-rement of about 21.4%, and 59.5% in the average evaporator temperature, and thermal resis-tance respectively while offering maximum thermal efficiency enhancement of about 31.4% relative to the base fluid. The 75% Al2O3+25% GO hybrid nanofluid in the heat pipe offered the least thermal resistance at a gravity-assisted inclination of 60º. The current study contem- plates the most favourable hybrid combination of Al2O3 and GO nanoparticles for its incor-poration in the heat pipe and tries to identify the underlying reasons behind the performance characteristics achieved using hybrid nanofluids and finally projects the future research scope.

___

  • REFERENCES
  • [1] Gupta NK, Tiwari AK, Ghosh SK. Experimental study of thermal performance of nanofluid-filled and nanoparticles-coated mesh wick heat pipes. J Heat Transf 2018;140:1–7. [CrossRef]
  • [2] Jouhara H, Chauhan A, Nannou T, Almahmoud S, Delpech B, Wrobel LC. Heat pipe based systems - Advances and applications. Energy 2017;128:729–754. [CrossRef]
  • [3] Senthil R, Ratchagaraja D, Silambarasan R, Manikandan R. Contemplation of thermal characteristics by filling ratio of Al2O3 nanofluid in wire mesh heat pipe. Alexandria Eng J 2016;55:1063–1068.
  • [4] Gupta NK, Tiwari AK, Ghosh SK. Experimental investigation of the thermal performance of mesh wick heat pipe. Heat Transf Res 2018; 49:1793–1811. [CrossRef]
  • [5] Zhou R, Fu S, Li H, Yuan D, Tang B, Zhou G. Experimental study on thermal performance of copper nanofluids in a miniature heat pipe fabricated by wire electrical discharge machining, Appl Therm Eng 2019;160:113989. [CrossRef]
  • [6] Gupta NK, Tiwari AK, Verma SK, Rathore PKS, Ghosh SK. A comparative study of thermal performance of a heat pipe using water and nanofluid, and a nanoparticle-coated wick heat pipe using water. Heat Transf Res 2019;50:1767–1779. [CrossRef]
  • [7] Das S, Giri A, Samanta S, Kanagaraj S. Role of graphene nanofluids on heat transfer enhancement in thermosyphon. J Sci Adv Mater Devices 2019;4:163–169. [CrossRef]
  • [8] Gupta NK, Sharma A, Rathore PKS, Verma SK. Thermal performance optimization of heat pipe using nanofluid: Response surface methodology. J Brazilian Soc Mech Sci Eng 2020;42:1–16. [CrossRef]
  • [9] Choi S. Nanofluid technology: Current status and future research. Korea-U.S. Technical Conference on Strategic Technologies, Vienna, VA (United States), 22-24 Oct 1998.
  • [10] Gupta NK, Verma SK, Rathore PKS, Sharma A. Effects of CuO/water nanofluid application on thermal performance of mesh wick heat pipe. Heat Transf Res 2020;51:837–850. [CrossRef]
  • [11] Chandrasekar M, Suresh S, Chandra Bose A. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp Therm Fluid Sci 2010;34:210–216. [CrossRef]
  • [12] Murshed SMS, Leong KC, Yang C. Enhanced thermal conductivity of TiO2 - Water based nanofluids. Int J Therm Sci 2005;44:367–373. [CrossRef]
  • [13] Kumaresan G, Venkatachalapathy S, Godson L, Wongwises S. Comparative study on heat transfer characteristics of sintered and mesh wick heat pipes using CuO nano fluids. Int Commun Heat Mass Transf 2014;57:208–215. [CrossRef]
  • [14] Pandya NS,. Desai AN, Kumar Tiwari A, Said Z. Influence of the geometrical parameters and particle concentration levels of hybrid nanofluid on the thermal performance of axial grooved heat pipe. Therm Sci Eng Prog 2021;21:100762. [CrossRef]
  • [15] Poplaski LM, Benn SP, Faghri A. Thermal performance of heat pipes using nanofluids. Int J Heat Mass Transf 2017;107:358–371. [CrossRef]
  • [16] Putra N, Septiadi WN, Rahman H, Irwansyah R. Thermal performance of screen mesh wick heat pipes with nanofluids. Exp Therm Fluid Sci 2012;40:10–17. [CrossRef]
  • [17] Gupta NK, Sharma A, Rathore PKS, Verma SK. Thermal performance optimization of heat pipe using nanofluid: Response surface methodology. J Brazilian Soc Mech Sci Eng 2020;42:590. [CrossRef]
  • [18] Ghanbarpour M, Nikkam N, Khodabandeh R, Toprak MS, Muhammed M. Thermal performance of screen mesh heat pipe with Al2O3 nanofluid. Exp Therm Fluid Sci 2015;66:213–220. [CrossRef]
  • [19] Gürü M, Sözen A, Karakaya U, Çiftçi E. Influences of bentonite-deionized water nanofluid utilization at different concentrations on heat pipe performance: An experimental study. Appl Therm Eng 2019;148:632–640. [CrossRef]
  • [20] Hassan MI, Singh PK, Tesfai W, Shatilla Y. An experimental study of heat pipe performance using nanofluids. Int J Green Energy 2015;12:225–229. [CrossRef]
  • [21] Yılmaz Aydın D, Çiftçi E, Gürü M, Sözen A. The impacts of nanoparticle concentration and surfactant type on thermal performance of a thermosyphon heat pipe working with bauxite nanofluid. Energy Sources A Recover Util Environ Eff 2021;43:1524–1548. [CrossRef]
  • [22] Swapnil K, Dhananjay P, Gaurav Z, Anand R, Kamble DP. Heat transfer enhancement of circular heat pipe with Al2O3 bn / water hybrid nanofluid. Int J Curr Eng Technol 2016;4:138–143.
  • [23] Zufar M, Gunnasegaran P, Kumar HM, Ng KC. Numerical and experimental investigations of hybrid nanofluids on pulsating heat pipe performance. Int J Heat Mass Transf 2020;146:118887. [CrossRef]
  • [24] Henein SM, Abdel-Rehim AA. The performance response of a heat pipe evacuated tube solar collector using MgO/MWCNT hybrid nanofluid as a working fluid. Case Stud Therm Eng 2022;33:101957. [CrossRef]
  • [25] Vidhya R, Balakrishnan T, Kumar BS. Investigation on thermophysical properties and heat transfer performance of heat pipe charged with binary mixture based ZnO-MgO hybrid nanofluids. Mater Today Proceed 2020;37:3423–3433. [CrossRef]
  • [26] Wang Z, Zhang H, Yin L, Yang D, Yang G, Akkurt N, et al. Experimental study on heat transfer properties of gravity heat pipes in single/hybrid nanofluids and inclination angles. Case Stud Therm Eng 2022;34:102064. [CrossRef]
  • [27] Zhao T, Ma Z, Zhang Z, Deng W, Long R, Liu W, et al. Experimental investigation of a loop heat pipe with a flat evaporator and cupric oxide nanofluids as working fluid. Energy Rep 2021;7:7693–7703. [CrossRef]
  • [28] Bumataria RK, Chavda NK, Nalbandh AH. Performance evaluation of the cylindrical shaped heat pipe utilizing water-based CuO and ZnO hybrid nanofluids. Energy Sources Part A Recover Util Environ Eff 2020. [Epub ahead of print]. doi: 10.1080/15567036.2020.1832628. [CrossRef]
  • [29] Ramachandran R, Ganesan K, Rajkumar MR, Asirvatham LG, Wongwises S. Comparative study of the effect of hybrid nanoparticle on the thermal performance of cylindrical screen mesh heat pipe. Int Commun Heat Mass Transf 2016;76:294–300. [CrossRef]
  • [30] Han WS, Rhi SH. Thermal characteristics of grooved heat pipe with hybrid nanofluids.Therm Sci 2011;15:195–206. [CrossRef]
  • [31] Pandey H, Agarwal S, Gupta NK. Temporal performance evaluation of CuO + GO hybrid nanofluids in heat pipe. Heat Transf Res 2022;53:75–96. [CrossRef]
  • [32] Moffat RJ. Describing the uncertainties in experimental results. Exp Therm Fluid Sci 1998;1:3–17.
  • [33] Pandey H, Gupta NK. Analysis of heat transfer mechanisms in heat pipes: A review. J Enhanc Heat Transf 2022;29:61–96. [CrossRef]
  • [34] Gupta NK, Tiwari AK, Ghosh SK. Heat transfer mechanisms in heat pipes using nanofluids – A review. Exp Therm Fluid Sci 2018;90:84–100. [CrossRef]