DESIGN AND SIMULATION OF A NOVEL C-DEP MICROFLUIDICS FOR SINGLE CELL TRAPPING

Dielectrophoresis (DEP), as a promising tool, have been used to separate, sort and deform bio-particles. In traditional method of DEP, the direct contact of electrodes with bio-particles leads to contamination and lysis of cells and joule heating in medium. In new DEP methods, such as isolated DEP (iDEP) or contactless DEP (cDEP), some of these rigors are overcame. In the method presented herein, these new techniques are used to provide a non-uniform electric field to trap a single cell in a desired area. We used the insulating structures to guide a flow as well as the manipulation of particles. Finite element analysis (FEA) is used to obtain an optimized microstructure. The joule heating and maximum DEP force is compared with traditional method and results prove the capability of these systems to trap a single cell efficiently.

___

  • [1] Elsasser, W.M., Outline of a theory of cellular heterogeneity. Proceedings of the National Academy of Sciences, 1984. 81(16): p. 5126-5129.
  • [2] Rubin, H., The significance of biological heterogeneity. Cancer and Metastasis Reviews, 1990. 9(1): p. 1-20.
  • [3] Altschuler, S.J. and L.F. Wu, Cellular heterogeneity: do differences make a difference? Cell, 2010. 141(4): p. 559-563.
  • [4] Wang, D. and S. Bodovitz, Single cell analysis: the new frontier in ‘omics’. Trends in biotechnology, 2010. 28(6): p. 281-290.
  • [5] Joensson, H.N. and H. Andersson Svahn, Droplet Microfluidics—A Tool for Single‐Cell Analysis. Angewandte Chemie International Edition, 2012. 51(49): p. 12176-12192.
  • [6] V. Lecault, A.K. White, A. Singhal, C.L. Hansen, Microfluidic single cell analysis: from promise to practice, Current opinion in chemical biology, 16 (2012) 381-390.
  • [7] A.A. Powell, A.H. Talasaz, H. Zhang, M.A. Coram, A. Reddy, G. Deng, M.L. Telli, R.H. Advani, R.W. Carlson, J.A. Mollick, Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines, PloS one, 7 (2012) e33788.
  • [8] Yin, H. and D. Marshall, Microfluidics for single cell analysis. Current opinion in biotechnology, 2012. 23(1): p. 110-119.
  • [9] Gascoyne, P.R. and J. Vykoukal, Particle separation by dielectrophoresis. Electrophoresis, 2002. 23(13): p. 1973.
  • [10] A. Rosenthal, B.M. Taff, J. Voldman, Quantitative modeling of dielectrophoretic traps, Lab on a Chip, 6 (2006) 508-515.
  • [11] Moghimizand, M. and M. Shiri, Design and simulation of a novel motile sperm separation microfluidic system by use of electrophoresis. Sharif Journal, 2016(In Farsi)."
  • [12] Rosenthal, A., B.M. Taff, and J. Voldman, Quantitative modeling of dielectrophoretic traps. Lab on a Chip, 2006. 6(4): p. 508-515.
  • [13] Gijs, M.A., Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluidics and Nanofluidics, 2004. 1(1): p. 22-40.
  • [14]Han, K.-H. and A.B. Frazier, Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations. Lab on a Chip, 2006. 6(2): p. 265-273.
  • [15] Choi, S. and J.-K. Park, Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel. Lab on a Chip, 2007. 7(7): p. 890-897.
  • [16] A. Neild, S. Oberti, G. Radziwill, J. Dual, Simultaneous positioning of cells into two‐dimensional arrays using ultrasound, Biotechnology and bioengineering, 97 (2007) 1335-1339.
  • [17] M. Wiklund, C. Günther, R. Lemor, M. Jäger, G. Fuhr, H.M. Hertz, Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip, Lab on a Chip, 6 (2006) 1537-1544.
  • [18] E.M. Freer, O. Grachev, X. Duan, S. Martin, D.P. Stumbo, High-yield self-limiting single-nanowire assembly with dielectrophoresis, Nature nanotechnology, 5 (2010) 525-530.
  • [19] Pethig, R., Review article—dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics, 2010. 4(2): p. 022811.
  • [20] C. Zhang, K. Khoshmanesh, A. Mitchell, K. Kalantar-Zadeh, Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems, Analytical and bioanalytical chemistry, 396 (2010) 401-420.
  • [21] Çetin, B. and D. Li, Dielectrophoresis in microfluidics technology. Electrophoresis, 2011. 32(18): p. 2410-2427.
  • [22] Gagnon, Z.R., Cellular dielectrophoresis: applications to the characterization, manipulation, separation and patterning of cells. Electrophoresis, 2011. 32(18): p. 2466-2487.
  • [23] Martinez Duarte, R., Microfabrication technologies in dielectrophoresis applications—A review. Electrophoresis, 2012. 33(21): p. 3110-3132.
  • [24] B.H. Lapizco-Encinas, B.A. Simmons, E.B. Cummings, Y. Fintschenko, Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators, Analytical chemistry, 76 (2004) 1571-1579.
  • [25] B.H. Lapizco-Encinas, R.V. Davalos, B.A. Simmons, E.B. Cummings, Y. Fintschenko, An insulator-based (electrodeless) dielectrophoretic concentrator for microbes in water, Journal of Microbiological methods, 62 (2005) 317-326.
  • [26] Pohl, H.A., Some effects of nonuniform fields on dielectrics. Journal of Applied Physics, 1958. 29(8): p. 1182-1188.
  • [27] J. Cecil, M.B.R. Kumar, Y. Lu, V. Basallali, A review of micro-devices assembly techniques and technology, The International Journal of Advanced Manufacturing Technology, 83 (2016) 1569-1581.
  • [28] Menachery, A. and R. Pethig. Controlling cell destruction using dielectrophoretic forces. in IEE Proceedings-Nanobiotechnology. 2005. IET.
  • [29] Markx, G.H., The use of electric fields in tissue engineering: A review. Organogenesis, 2008. 4(1): p. 11-17.
  • [30] Gallo Villanueva, R.C., et al., Joule heating effects on particle immobilization in insulator‐based dielectrophoretic devices. Electrophoresis, 2014. 35(2-3): p. 352-361.
  • [31] Masuda, S., T. Itagaki, and M. Kosakada, Detection of extremely small particles in the nanometer and ionic size range. Industry Applications, IEEE Transactions on, 1988. 24(4): p. 740-744.
  • [32] H. Shafiee, J.L. Caldwell, M.B. Sano, R.V. Davalos, Contactless dielectrophoresis: a new technique for cell manipulation, Biomedical microdevices, 11 (2009) 997-1006.
  • [33] H. Shafiee, M.B. Sano, E.A. Henslee, J.L. Caldwell, R.V. Davalos, Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP), Lab on a Chip, 10 (2010) 438-445.
  • [34] Wang, K.-H., F.-T. Chang, and Y.-C. Lee. A dielectrophoretic single-cell trapping chip with multiple electrodes and arrayed 3D microstructures. in 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems. 2007. IEEE.
  • [35] C. Huang, C. Liu, J. Loo, T. Stakenborg, L. Lagae, Single cell viability observation in cell dielectrophoretic trapping on a microchip, Applied Physics Letters, 104 (2014) 013703.
  • [36] A. Khamenehfar, M.K. Gandhi, Y. Chen, D.E. Hogge, P.C. Li, Dielectrophoretic Microfluidic Chip Enables Single-Cell Measurements for Multidrug Resistance in Heterogeneous Acute Myeloid Leukemia Patient Samples, Analytical chemistry, (2016).
  • [37] L.A. Tempelman, K.D. King, G.P. Anderson, F.S. Ligler, Quantitating staphylococcal enterotoxin B in diverse media using a portable fiber-optic biosensor, Analytical biochemistry, 233 (1996) 50-57.
  • [38] N.-C. Chen, C.-H. Chen, M.-K. Chen, L.-S. Jang, M.-H. Wang, Single-cell trapping and impedance measurement utilizing dielectrophoresis in a parallel-plate microfluidic device, Sensors and Actuators B: Chemical, 190 (2014) 570-577.
  • [39] S. Bhattacharya, T.-C. Chao, N. Ariyasinghe, Y. Ruiz, D. Lake, R. Ros, A. Ros, Selective trapping of single mammalian breast cancer cells by insulator-based dielectrophoresis, Analytical and bioanalytical chemistry, 406 (2014) 1855-1865.