THIN LAYER DRYING MODELING OF APPLES AND APRICOTS IN A SOLAR-ASSISTED DRYING SYSTEM

This work presents the drying process of apricots and apples which have been considered for drying in a solar-assisted forced convection tray dryer. The logarithmic model has been used to describe the drying behavior of apples and apricots at different air temperatures (50 °C to 80 °C) and at different air velocities (0.5 m/s to 2 m/s) based on experimental data from several studies.The slice thickness of apples has been assumed at 10 mm with initial moisture content 87 % d. b; the main diameter of apricots was 40 mm with initial moisture content 80 % d. b. The changes in moisture content with drying time during the drying period have been presented indicating the absence of the constant rate period. In addition, drying air flow rates and temperatures had an important effect on the drying time and on the moisture removal from apricots and apples. Finally, the effective moisture diffusivity values have been estimated from Fick’s diffusion model pointing out that it has been increased with the increase of the drying air temperature

___

  • [1] Stegou-Sagia, A., & Fragkou, D. (2015). Influence of drying conditions and mathematical models on the drying curves and the moisture diffusivity of mushrooms. Journal of Thermal Engineering, 1(4), 235-244.
  • [2] Gatea, A. A. (2011). Design and construction of a solar drying system, a cylindrical section and analysis of the performance of the thermal drying system. African Journal of Agricultural Research, 6(2), 343–351.
  • [3] Pangavhane, D. R., Sawhney, R. L., & Sarsavadia, P. N. (2002). Design, development and performance testing of a new natural convection solar dryer. Energy, 27(6), 579–590.
  • [4] Mujumdar, A. S. (2015). Handbook of Industrial Drying Fourth Edition. CRC Press, 1–1288.
  • [5] Sodha, M. S., & Chandra, R. (1994). Solar drying systems and their testing procedures: A review. Energy Conversion and Management, 35(3), 219–267.
  • [6] Jairaj, K. S., Singh, S. P., & Srikant, K. (2009). A review of solar dryers developed for grape drying. Solar Energy, 83(9), 1698–1712.
  • [7] Tripathy, P. P., & Kumar, S. (2008). Determination of temperature dependent drying parameters for potato cylinders and slices during solar drying. Energy Conversion and Management, 49(11), 2941–2948.
  • [8] Sarsavadia, P. N. (2007). Development of a solar-assisted dryer and evaluation of energy requirement for the drying of onion. Renewable Energy, 32(15), 2529–2547.
  • [9] Yaldýz, O., & Ertekýn, C. (2001). Thin layer solar drying of some vegetables. Drying Technology, 19(3–4), 583–597.
  • [10] Thoruwa, T. F. N., Smith, J. E., Grant, A. D., & Johnstone, C. M. (1996). Developments in solar drying using forced ventilation and solar regenerated desiccant materials. Renewable Energy, 9(1), 686–689.
  • [11] Doymaz, I. (2005). Sun drying of figs: An experimental study. Journal of Food Engineering, 71(4), 403–407.
  • [12] Elicin, A. K., & Sacilik, K. (2005). An experimental study for solar tunnel drying of apple. Tarim Bilimleri, 11(2), 207-11.
  • [13] Karabulut, I., Topcu, A., Duran, A., Turan, S., & Ozturk, B. (2007). Effect of hot air drying and sun drying on color values and β-carotene content of apricot (Prunus armenica L.). LWT - Food Science and Technology, 40(5), 753–758.
  • [14] Akpinar, E. K., Sarsilmaz, C., & Yildiz, C. (2004). Mathematical modelling of a thin layer drying of apricots in a solar energized rotary dryer. International Journal of Energy Research, 28(8), 739–752.
  • [15] Togrul, I. T., & Pehlivan, D. (2002). Mathematical modelling of solar drying of apricots in thin layers. Journal of Food Engineering, 55(3), 209–216.
  • [16] Dissa, A. O., Bathiebo, D. J., Desmorieux, H., Coulibaly, O., & Koulidiati, J. (2011). Experimental characterisation and modelling of thin layer direct solar drying of Amelie and Brooks mangoes. Energy, 36(5), 2517–2527.
  • [17] Gbaha, P., Yobouet Andoh, H., Kouassi Saraka, J., Kaménan Koua, B., & Touré, S. (2007). Experimental investigation of a solar dryer with natural convective heat flow. Renewable Energy, 32(11), 1817–1829.
  • [18] Zaman, M. A., & Bala, B. K. (1989). Thin layer solar drying of rough rice. Solar Energy, 42(2), 167–171.
  • [19] Basunia, M. A., & Abe, T. (2001). Thin-layer solar drying characteristics of rough rice under natural convection. Journal of Food Engineering, 47(4), 295–301.
  • [20] Midilli, A., & Kucuk, H. (2003). Mathematical modeling of thin layer drying of pistachio by using solar energy. Energy Conversion and Management, 44(7), 1111–1122.
  • [21] Stegou-Sagia, A.; Fragkou, D. V. (2014). Influence of drying conditions and mathematical models on the thin layer drying of mushrooms. Proceedings of the ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis, Copenhagen, Denmark.
  • [22] Rayaguru, K., & Routray, W. (2012). Mathematical modeling of thin layer drying kinetics of stone apple slices. International Food Research Journal, 19(4), 1503–1510.
  • [23] Mirzaee, E., Rafiee, S., & Keyhani, A. (2010). Evaluation and selection of thin-layer models for drying kinetics of apricot (cv. NASIRY). Agricultural Engineering International: CIGR Journal, 12(2), 111–116.
  • [24] Toǧrul, I. T., & Pehlivan, D. (2003). Modelling of drying kinetics of single apricot. Journal of Food Engineering, 58(1), 23–32.
  • [25] Kumar, M. Drying of Grapes (Thompson Seedless) using a Microwave-Vacuum Dryer., Thesis of M. Tech, Indian Institute of Technology Kharagpur, 2014.
  • [26] Doymaz, I., & Akgün, N. A. (2009). Study of thin-layer drying of grape wastes. Chemical Engineering Communications, 196(7), 890–900.
  • [27] Xanthopoulos, G., Oikonomou, N., & Lambrinos, G. (2007). Applicability of a single-layer drying model to predict the drying rate of whole figs. Journal of Food Engineering, 81(3), 553–559.
  • [28] Doymaz, I. (2010). Evaluation of mathematical models for prediction of thin-layer drying of banana slices. International Journal of Food Properties, 13(3), 486–497.
  • [29]Mariem, S. Ben, & Mabrouk, S. Ben. (2014). Drying characteristics of tomato slices and mathematical modeling. International Journal of Energy Engineering 2014, 4(2A), 17–24.
  • [30] Purkayastha, M. D., Nath, A., Deka, B. C., & Mahanta, C. L. (2013). Thin layer drying of tomato slices. Journal of food science and technology, 50(4), 642-653.
  • [31] Kouchakzadeh, A., & Haghighi, K. (2011). Modeling of vacuum-infrared drying of pistachios. Agricultural Engineering International: CIGR Journal, 13(3).
  • [32] Taheri-Garavand, A., Rafiee, S., & Keyhani, A. (2011). Study on effective moisture diffusivity, activation energy and mathematical modeling of thin layer drying kinetics of bell pepper. Australian Journal of Crop Science, 5(2), 128–131.
  • [33] Mohanraj, M., & Chandrasekar, P. (2008). Drying of copra in a forced convection solar drier. Biosystems Engineering, 99(4), 604–607.
  • [34] Mohanraj, M., & Chandrasekar, P. (2009). Performance of a forced convection solar drier integrated with gravel as heat storage material for chili drying. Journal of Engineering Science and Technology, 4(3), 305–314.
  • [35] Wang, Z., Sun, J., Liao, X., Chen, F., Zhao, G., Wu, J., & Hu, X. (2007). Mathematical modeling on hot air drying of thin layer apple pomace. Food Research International, 40(1), 39–46.
  • [36] Panchariya, P. C., Popovic, D., & Sharma, A. L. (2002). Thin-layer modelling of black tea drying process. Journal of Food Engineering, 52(4), 349–357.
  • [37] O’Callaghan, J. R., Menzies, D. J., & Bailey, P. H. (1971). Digital simulation of agricultural drier performance. Journal of Agricultural Engineering Research, 16(3), 223–244.
  • [38] Moss, J. R., & Otten, L. (1989). A Relationship Between Colour Development and Moisture Content During Roasting of Peanuts. Canadian Institute of Food Science and Technology Journal, 22(1), 34–39.
  • [39] Sharaf-Eldeen, Y. I., Blaisdell, J. L., & Hamdy, M. Y. (1980). A model for ear corn drying. Transactions of the ASAE, 23(5), 1261-1265.
  • [40] Diamante, L. M., & Munro, P. A. (1993). Mathematical modelling of the thin layer solar drying of sweet potato slices. Solar Energy, 51(4), 271–276.
  • [41] Wang, C. Y., & Singh, R. P. (1978). A single layer drying equation for rough rice (No. 78-3001, p. 33). ASAE paper.
  • [42] Tulek, Y. (2011). Drying Kinetics of Oyster Mushroom ( Pleurotus ostreatus ) in a Convective Hot Air Dryer. Journal Agricultural Science Technology, 13, 655–664.
  • [43] Ertekin, C., & Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering, 63(3), 349–359.
  • [44] Sacilik, K., Keskin, R., & Elicin, A. K. (2006). Mathematical modelling of solar tunnel drying of thin layer organic tomato. Journal of Food Engineering, 73(3), 231–238.
  • [45] Thompson, T. L., Peart, R. M., & Foster, G. H. (1968). Mathematical simulation of corn drying—a new model. Transactions of the ASAE, 11(4), 582-0586.
  • [46] Verma, L. ., Bucklin, R. ., Endan, J. ., & Wratten, F. . (1985). Effects of Drying Air Parameters on Rice Drying Models. Transactions of the ASAE, 28(1), 0296–0301.
  • [47] Aghbashlo, M., kianmehr, M. H., & Samimi-Akhijahani, H. (2008). Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae). Energy Conversion and Management, 49(10), 2865–2871.