THERMO-ENVIRONMENTAL ANALYSIS AND MULTI-OBJECTIVE OPTIMIZATION OF PERFORMANCE OF ERICSSON ENGINE IMPLEMENTING AN EVOLUTIONARY ALGORITHM

This paper makes attempt to optimize a high-temperature differential Ericsson engine with several conditions. A mathematical approach based on the finite-time thermodynamic was proposed with the purpose of gaining thermal efficiency, the output power and the entropy generation rate throughout the Ericsson system with regenerative heat loss, finite rate of heat transfer, finite regeneration process time and conductive thermal bridging loss. In this study, an irreversible Ericsson engine is analyzed thermodynamically in order to optimize its performance. In addition, three Scenarios in multi-objective optimization are presented and the results of them are assessed individually. The first strategy is proposed to maximize the Ecological function, the thermal efficiency and the Exergetic performance criteria. Furthermore, the second strategy is suggested to maximize the Ecological function, the thermal efficiency and Ecological coefficient of performance. The third strategy is proposed to maximize the Ecological function and the thermal efficiency and Dimensionless ecological based thermo-environmental function.  Multi-objective evolutionary algorithms based on NSGA-II algorithm was applied to the aforementioned system for calculating the optimum values of decision variables. Decision variables considered in this paper including the regenerator’s effectiveness, the high-temperature heat exchanger’s effectiveness, the low-temperature heat exchanger’s effectiveness, the working fluid temperature in the low-temperature isothermal process and the working fluid temperature in the high-temperature isothermal process. Moreover, Pareto optimal frontier was achieved and an ultimate optimum answer was chosen via three competent decision makers comprising LINMAP, fuzzy Bellman-Zadeh, and TOPSIS approaches. The results from scenarios shown that third scenario is the best scenario.

___

  • [1] Tlili, I., and Sa’ed, A. (2013). Thermodynamic evaluation of a second order simulation for Yoke Ross Stirling engine. Energy conversion and management, 68, 149-160.
  • [2] Formosa, F., and Despesse, G. (2010). Analytical model for Stirling cycle machine design. Energy Conversion and Management, 51(10), 1855-1863.
  • [3] Berchowitz, D. M., and Urieli, I. (1984). Stirling cycle engine analysis. Adam Hilger Ltd, Bristol.
  • [4] Reader, G. T. (1983). Hooper C. Stirling engines. London and New York: EandFN Spon.
  • [5] Hargreaves, C. M. (1991). The Phillips stirling engine.
  • [6] Carlson, H., Commisso, M. B., and Lorentzen, B. (1990, August). Maximum obtainable efficiency for engines and refrigerators based on the Stirling cycle. In Proceedings of the 25th Intersociety Energy Conversion Engineering Conference (Vol. 5, pp. 366-371). IEEE.
  • [7] Urieli, I., and Kushnir, M. (1982). The ideal adiabatic cycle-A rational basis for Stirling engine analysis. In IECEC'82; Proceedings of the Seventeenth Intersociety Energy Conversion Engineering Conference (pp. 1662-1668).
  • [8] Martaj, N., Grosu, L., and Rochelle, P. (2007). Thermodynamic study of a low temperature difference Stirling engine at steady state operation. International Journal of Thermodynamics, 10(4), 165.
  • [9] Markman, M. A., SHMATOK, I., and KRASOVSKII, V. (1983). An experimental investigation of a low-power Stirling engine. Geliotekhnika, (3), 19-24.
  • [10] Kagawa, N., Araoka, K., Sakuma, T., and Ichikawa, S. (1990, August). Design and development of a miniature Stirling engine. In Proceedings of the 25th Intersociety Energy Conversion Engineering Conference (Vol. 5, pp. 442-447). IEEE.
  • [11] Brandhorst Jr, H. W., and Chapman Jr, P. A. (2008). New 5 kW free-piston Stirling space convertor developments. Acta Astronautica, 63(1-4), 342-347.
  • [12] Ataer, Ö. E. (2002). Numerical analysis of regenerators of free-piston type Stirling engines using Lagrangian formulation. International journal of refrigeration, 25(5), 640-652.
  • [13] Nakajima, N., Ogawa, K., and Fujimasa, I. (1989). Study on microengines: miniaturing Stirling engines for actuators. Sensors and Actuators, 20(1-2), 75-82.
  • [14] Aramtummaphon, D. (1996). A study of the feasibility of using heat energy from producer gas for running Stirling engine by steam as working Fluid (Doctoral dissertation, Master thesis, King Mongkut’s University of technology Thonburi).
  • [15] Fukui, T., Shiraishi, T., Murakami, T., and Nakajima, N. (1999). Study on high specific power micro-Stirling engine. JSME International Journal Series B Fluids and Thermal Engineering, 42(4), 776-782.
  • [16] Iwamoto, S., Toda, F., Hirata, K., Takeuchi, M., and Yamamoto, T. (1997, May). Comparison of low-and high-temperature differential Stirling engines. In Proceedings of eighth International Stirling engine conference (pp. 29-38).
  • [17] Wu, F., Chen, L., Wu, C., and Sun, F. (1998). Optimum performance of irreversible Stirling engine with imperfect regeneration. Energy Conversion and Management, 39(8), 727-732.
  • [18] Erbay, L. B., and Yavuz, H. (1997). Analysis of the Stirling heat engine at maximum power conditions. Energy, 22(7), 645-650.
  • [19] Ahmadi, M. H., and Hosseinzade, H. (2012). Investigation of solar collector design parameters effect onto solar stirling engine efficiency. J Applied Mechanic Engg, 1(102), 2.
  • [20] Ahmadi, M. H., Aghaj, S. S. G., and Nazeri, A. (2013). Prediction of power in solar stirling heat engine by using neural network based on hybrid genetic algorithm and particle swarm optimization. Neural Computing and Applications, 22(6), 1141-1150.
  • [21] Ahmadi, M. H., Ahmadi, M. A., Sadatsakkak, S. A., and Feidt, M. (2015). Connectionist intelligent model estimates output power and torque of stirling engine. Renewable and Sustainable Energy Reviews, 50, 871-883. [22] Ahmadi, M., Ahmadi, M. A., Mehrpooya, M., and Rosen, M. (2015). Using GMDH neural networks to model the power and torque of a stirling engine. Sustainability, 7(2), 2243-2255.
  • [23] Toghyani, S., Ahmadi, M. H., Kasaeian, A., and Mohammadi, A. H. (2016). Artificial neural network, ANN-PSO and ANN-ICA for modelling the Stirling engine. International Journal of Ambient Energy, 37(5), 456-468.
  • [24] Curzon, F. L., and Ahlborn, B. (1975). Efficiency of a Carnot engine at maximum power output. American Journal of Physics, 43(1), 22-24.
  • [25] Novikov, I. I. (1958). The efficiency of atomic power stations (a review). Journal of Nuclear Energy (1954), 7(1-2), 125-128.
  • [26] Wu, C. (1988). Power optimization of a finite-time Carnot heat engine. Energy, 13(9), 681-687.
  • [27] Yan, Z., and Chen, L. (1995). The fundamental optimal relation and the bounds of power output and efficiency for an irreversible Carnot engine. Journal of Physics A: Mathematical and General, 28(21), 6167.
  • [28] Chen, J. (1994). The maximum power output and maximum efficiency of an irreversible Carnot heat engine. Journal of Physics D: Applied Physics, 27(6), 1144.
  • [29] Angulo‐Brown, F. (1991). An ecological optimization criterion for finite‐time heat engines. Journal of Applied Physics, 69(11), 7465-7469.
  • [30] Chen, L., Xiaoqin, Z., Sun, F., and Wu, C. (2004). Ecological optimization for generalized irreversible Carnot refrigerators. Journal of Physics D: Applied Physics, 38(1), 113.
  • [31] Chen, L., Zhang, W., and Sun, F. (2007). Power, efficiency, entropy-generation rate and ecological optimization for a class of generalized irreversible universal heat-engine cycles. Applied Energy, 84(5), 512-525. [32] Chen, L., Zhou, J., Sun, F., and Wu, C. (2004). Ecological optimization for generalized irreversible Carnot engines. Applied Energy, 77(3), 327-338.
  • [33] Chen, L., Xiaoqin, Z., Sun, F., and Wu, C. (2007). Exergy-based ecological optimization for a generalized irreversible Carnot heat-pump. Applied Energy, 84(1), 78-88.
  • [34] Ge, Y., Chen, L., and Sun, F. (2016). Progress in finite time thermodynamic studies for internal combustion engine cycles. Entropy, 18(4), 139.
  • [35] Chen, L., Meng, F., and Sun, F. (2016). Thermodynamic analyses and optimization for thermoelectric devices: The state of the arts. Science China Technological Sciences, 59(3), 442-455.
  • [36] Cheng, C. Y. (1997). The ecological optimization of an irreversible Carnot heat engine. Journal of physics D: Applied physics, 30(11), 1602.
  • [37] Xia, D., Chen, L., Sun, F., and Wu, C. (2006). Universal ecological performance for endo-reversible heat engine cycles. International journal of ambient energy, 27(1), 15-20.
  • [38] Zhang, W., Chen, L., Sun, F., and Wu, C. (2007). Exergy-based ecological optimal performance for a universal endoreversible thermodynamic cycle. International Journal of Ambient Energy, 28(1), 51-56.
  • [39] Chen, L., Zhu, X., Sun, F., and Wu, C. (2006). Exergy-based ecological optimization of linear phenomenological heat-transfer law irreversible Carnot-engines. Applied Energy, 83(6), 573-582.
  • [40] Zhu, X., Chen, L., Sun, F., and Wu, C. (2003). The ecological optimisation of a generalised irreversible Carnot engine for a generalised heat transfer law. International journal of ambient energy, 24(4), 189-194.
  • [41] Zhu, X., Chen, L., Sun, F., and Wu, C. (2005). Effect of heat transfer law on the ecological optimization of a generalized irreversible Carnot engine. Open Systems and Information Dynamics, 12(03), 249-260.
  • [42] Li, J., Chen, L., and Sun, F. (2011). Ecological performance of an endoreversible Carnot heat engine with complex heat transfer law. International Journal of Sustainable Energy, 30(1), 55-64.
  • [43] Li, J., Chen, L., and Sun, F. (2011). Ecological performance of a generalized irreversible Carnot heat engine with complex heat transfer law. Int. J. Energy and Environment, 2(1), 57-70.
  • [44] Tu, Y., Chen, L., Sun, F., and Wu, C. (2006). Exergy-based ecological optimisation for an endoreversible Brayton refrigeration cycle. International Journal of Exergy, 3(2), 191-201.
  • [45] Chen, L., Xiaoqin, Z., Sun, F., and Wu, C. (2004). Ecological optimization for generalized irreversible Carnot refrigerators. Journal of Physics D: Applied Physics, 38(1), 113.
  • [46] Chen, L., Xiaoqin, Z., Sun, F., and Wu, C. (2007). Exergy-based ecological optimization for a generalized irreversible Carnot heat-pump. Applied Energy, 84(1), 78-88.
  • [47] Chen, L., Xiaoqin, Z., Sun, F., and Wu, C. (2007). Exergy-based ecological optimization for a generalized irreversible Carnot heat-pump. Applied Energy, 84(1), 78-88.
  • [48] Chen, L., Xiaoqin, Z., Sun, F., and Wu, C. (2007). Ecological optimisation of a generalised irreversible Carnot refrigerator for a generalised heat transfer law. International Journal of Ambient Energy, 28(4), 213-219.
  • [49] Li, J., Chen, L., Sun, F., and Wu, C. (2011). Ecological performance of an endoreversible Carnot refrigerator with complex heat transfer law. International Journal of Ambient Energy, 32(1), 31-36.
  • [50] Chen, L., Li, J., and Sun, F. (2012). Ecological optimization of a generalized irreversible Carnot refrigerator in the case of Q∝(Δ T n) m. International Journal of Sustainable Energy, 31(1), 59-72.
  • [51] Tyagi, S. K., Kaushik, S. C., and Salohtra, R. (2002). Ecological optimization and parametric study of irreversible Stirling and Ericsson heat pumps. Journal of Physics D: Applied Physics, 35(16), 2058.
  • [52] Zhu, X., Chen, L., Sun, F., and Wu, C. (2005). Effect of heat transfer law on the ecological optimization of a generalized irreversible Carnot engine. Open Systems and Information Dynamics, 12(03), 249-260.
  • [53] Zhu, X., Chen, L., Sun, F., and Wu, C. (2005). The ecological optimization of a generalized irreversible Carnot heat pump for a generalized heat transfer law. Journal of the Energy Institute, 78(1), 5-10.
  • [54] Chen L, Li J, Sun F, and Wu C (2009). Effect of a complex generalized heat transfer law on ecological performance of an endoreversible Carnot heat pump. Int J Ambient Energy, 30, 102–8.
  • [55] Zhu, X., Chen, L., Sun, F., and Wu, C. (2001). Optimum performance of a generalized irreversible Carnot heat pump with a generalized heat transfer law. Physica Scripta, 64(6), 584.
  • [56] Liu, X., Chen, L., Wu, F., and Sun, F. (2009). Ecological optimization of an irreversible harmonic oscillators Carnot heat engine. Science in China Series G: Physics, Mechanics and Astronomy, 52(12), 1976-1988.
  • [57] Wang, W. H., Chen, L. G., Sun, F. R., and Wu, C. (2006). Optimal heat conductance distribution and optimal intercooling pressure ratio for power optimisation of irreversible closed intercooled regenerated Brayton cycle. Journal of the Energy Institute, 79(2), 116-119.
  • [58] Wang, W., Chen, L., and Sun, F. (2011). Ecological optimisation of an irreversible-closed ICR gas turbine cycle. International Journal of Exergy, 9(1), 66-79.
  • [59] Tyagi, S. K., Kaushik, S. C., and Salhotra, R. (2002). Ecological optimization and performance study of irreversible Stirling and Ericsson heat engines. Journal of Physics D: Applied Physics, 35(20), 2668.
  • [60] Zhu, X., Chen, L., Sun, F., and Wu, C. (2006). Exergy-based ecological optimization for a generalized irreversible Carnot refrigerator. Journal of the Energy Institute, 79(1), 42-46.
  • [61] Wu C, Chen L, and Sun F (2006). Ecological optimization performance of an irreversible quantum SI engine powering with an ideal Fermi gas. Open Sys Inform Dynam, 13, 55–66.
  • [62] Acikkalp, E. (2013). Models for optimum thermo-ecological criteria of actual thermal cycles. Thermal Science, 17(3).
  • [63] Ust, Y., Sahin, B., and Sogut, O. S. (2005). Performance analysis and optimization of an irreversible dual-cycle based on an ecological coefficient of performance criterion. Applied energy, 82(1), 23-39.
  • [64] Ust, Y., and Sahin, B. (2007). Performance optimization of irreversible refrigerators based on a new thermo-ecological criterion. International Journal of Refrigeration, 30(3), 527-534.
  • [65] Ust, Y., Sahin, B., Kodal, A., and Akcay, I. H. (2006). Ecological coefficient of performance analysis and optimization of an irreversible regenerative-Brayton heat engine. Applied Energy, 83(6), 558-572.
  • [66] Sogut, O. S., Ust, Y., and Sahin, B. (2006). The effects of intercooling and regeneration on the thermo-ecological performance analysis of an irreversible-closed Brayton heat engine with variable-temperature thermal reservoirs. Journal of Physics D: Applied Physics, 39(21), 4713.
  • [67] Ust, Y. (2010). Effect of regeneration on the thermo-ecological performance analysis and optimization of irreversible air refrigerators. Heat and mass transfer, 46(4), 469-478.
  • [68] Ust, Y. (2009). Performance analysis and optimization of irreversible air refrigeration cycles based on ecological coefficient of performance criterion. Applied Thermal Engineering, 29(1), 47-55.
  • [69] Ust, Y., Sogut, O. S., Sahin, B., and Durmayaz, A. (2006). Ecological coefficient of performance (ECOP) optimization for an irreversible Brayton heat engine with variable-temperature thermal reservoirs. Journal of the Energy Institute, 79(1), 47-52.
  • [70] Ust, Y., Sahin, B., and Kodal, A. (2006). Performance analysis of an irreversible Brayton heat engine based on ecological coefficient of performance criterion. International Journal of Thermal Sciences, 45(1), 94-101.
  • [71] Üst, Y., Sahin, B., and Kodal, A. (2005). Ecological coefficient of performance (ECOP) optimization for generalized irreversible Carnot heat engines. Journal of the Energy Institute, 78(3), 145-151.
  • [72] Ust, Y., Safa, A., and Sahin, B. (2005). Ecological performance analysis of an endoreversible regenerative Brayton heat-engine. Applied Energy, 80(3), 247-260.
  • [73] Ust, Y., Akkaya, A. V., and Safa, A. (2011). Analysis of a vapour compression refrigeration system via exergetic performance coefficient criterion. Journal of the Energy Institute, 84(2), 66-72.
  • [74] Akkaya, A. V., Sahin, B., and Erdem, H. H. (2008). An analysis of SOFC/GT CHP system based on exergetic performance criteria. International Journal of Hydrogen Energy, 33(10), 2566-2577.
  • [75] Akkaya, A. V., Sahin, B., and Erdem, H. H. (2007). Exergetic performance coefficient analysis of a simple fuel cell system. International Journal of Hydrogen Energy, 32(17), 4600-4609.
  • [76] Ust, Y., Sahin, B., and Kodal, A. (2007). Optimization of a dual cycle cogeneration system based on a new exergetic performance criterion. Applied Energy, 84(11), 1079-1091.
  • [77] Ust, Y., Sahin, B., and Yilmaz, T. (2007). Optimization of a regenerative gas-turbine cogeneration system based on a new exergetic performance criterion: exergetic performance coefficient. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 221(4), 447-456.
  • [78] Gonca, G. (2017). Application of a novel thermo-ecological performance criterion: effective ecological power density (EFECPOD) to a Joule-Brayton cycle (JBC) turbine. Journal of Thermal Engineering, 3(5), 1478-1488.
  • [79] Mironova, V. A., Tsirlin, A. M., Kazakov, V. A., and Berry, R. S. (1994). Finite‐time thermodynamics: Exergy and optimization of time‐constrained processes. Journal of applied physics, 76(2), 629-636.
  • [80] Sieniutycz, S., and von Spakovsky, M. R. (1998). Finite time generalization of thermal exergy. Energy conversion and management, 39(14), 1423-1447.
  • [81] Sieniutycz, S. (1998). Generalized Carnot problem of maximum work in finite time via Hamilton–Jacobi–Bellman theory. Energy conversion and management, 39(16-18), 1735-1743.
  • [82] Sieniutycz, S. (1999). Carnot problem of maximum work from a finite resource interacting with environment in a finite time. Physica A: Statistical Mechanics and its Applications, 264(1-2), 234-263.
  • [83] Sieniutycz, S. (1997). Hamilton-Jacobi-Bellman theory of dissipative thermal availability. Physical Review E, 56(5), 5051.
  • [84] Li, J., Chen, L., and Sun, F. (2009). Optimum work in real systems with a class of finite thermal capacity reservoirs. Mathematical and Computer Modelling, 49(3-4), 542-547.
  • [85] Li, J., Chen, L., and Sun, F. (2010). Maximum work output of multistage continuous Carnot heat engine system with finite reservoirs of thermal capacity and radiation between heat source and working fluid. Thermal Sci, 14(1), 1-9.
  • [86] Li, J., Chen, L. G., and Sun, F. R. (2009). Extremal work of an endoreversible system with two finite thermal capacity reservoirs.
  • [87] Xia, S. J., Chen, L. G., and Sun, F. R. (2010). Effects of mass transfer laws on finite time exergy. Journal of the Energy Institute, 83(4), 210-216.
  • [88] Xia, S., Chen, L., and Sun, F. (2011). Power-optimization of non-ideal energy converters under generalized convective heat transfer law via Hamilton-Jacobi-Bellman theory. Energy, 36(1), 633-646.
  • [89] Xia, S. J., Chen, L. G., and Sun, F. R. (2012). Finite time exergy with generalised heat transfer law. Journal of the Energy Institute, 85(2), 70-77.
  • [90] Sharma, A., Shukla, S. K., and Rai, A. K. (2011). Finite time thermodynamic analysis and optimization of solar-dish stirling heat engine with regenerative losses. Thermal Science, 15(4).
  • [91] Yaqi, L., Yaling, H., and Weiwei, W. (2011). Optimization of solar-powered Stirling heat engine with finite-time thermodynamics. Renewable energy, 36(1), 421-427.
  • [92] Ahmadi, M. H., Sayyaadi, H., and Hosseinzadeh, H. (2015). Optimization of Output Power and Thermal Efficiency of Solar‐Dish Stirling Engine Using Finite Time Thermodynamic Analysis. Heat Transfer—Asian Research, 44(4), 347-376.
  • [93] Tlili, I. (2012). Finite time thermodynamic evaluation of endoreversible Stirling heat engine at maximum power conditions. Renewable and Sustainable Energy Reviews, 16(4), 2234-2241.
  • [94] Kaushik, S. C., and Kumar, S. (2001). Finite time thermodynamic evaluation of irreversible Ericsson and Stirling heat engines. Energy Conversion and Management, 42(3), 295-312.
  • [95] Kaushik, S. C., and Kumar, S. (2000). Finite time thermodynamic analysis of endoreversible Stirling heat engine with regenerative losses. Energy, 25(10), 989-1003.
  • [96] Kaushik, S. C., Tyagi, S. K., and Mohan, S. (2003). Performance evaluation of an irreversible Stirling heat engine cycle. International journal of ambient energy, 24(3), 149-156.
  • [97] Tyagi, S. K., Chen, J., Lin, G., and Kaushik, S. C. (2004). Thermoeconomic optimization and parametric study of an irreversible Ericsson heat engine cycle. Int. J. Appl. Thermodynamics, 7(4), 189-198.
  • [98] Veldhuizen, D.A.V., Lamont, G.B. (2000). Multiobjective evolutionary algorithms: analyzing the state-of-the-art, Evolutionary computation, 8, 125-147
  • [99] Konak, A., Coit, D. W., and Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering and System Safety, 91(9), 992-1007.
  • [100] Bäck, T., Fogel, D. B., and Michalewicz, Z. (1997). Handbook of evolutionary computation. CRC Press.
  • [101] Ahmadi, M. H., Hosseinzade, H., Sayyaadi, H., Mohammadi, A. H., and Kimiaghalam, F. (2013). Application of the multi-objective optimization method for designing a powered Stirling heat engine: design with maximized power, thermal efficiency and minimized pressure loss. Renewable Energy, 60, 313-322.
  • [102] Zhang, J., Zhu, H., Yang, C., Li, Y., and Wei, H. (2011). Multi-objective shape optimization of helico-axial multiphase pump impeller based on NSGA-II and ANN. Energy Conversion and Management, 52(1), 538-546. [103] Ahmadi, M. H., Sayyaadi, H., Dehghani, S., and Hosseinzade, H. (2013). Designing a solar powered Stirling heat engine based on multiple criteria: maximized thermal efficiency and power. Energy Conversion and Management, 75, 282-291.
  • [104] Lazzaretto, A., and Toffolo, A. (2004). Energy, economy and environment as objectives in multi-criterion optimization of thermal systems design. Energy, 29(8), 1139-1157.
  • [105] Ahmadi, M. H., Sayyaadi, H., Mohammadi, A. H., and Barranco-Jimenez, M. A. (2013). Thermo-economic multi-objective optimization of solar dish-Stirling engine by implementing evolutionary algorithm. Energy Conversion and Management, 73, 370-380.
  • [106] Ahmadi, M. H., Ahmadi, M. A., Maleki, A., Pourfayaz, F., Bidi, M., and Açıkkalp, E. (2017). Exergetic sustainability evaluation and multi-objective optimization of performance of an irreversible nanoscale Stirling refrigeration cycle operating with Maxwell–Boltzmann gas. Renewable and Sustainable Energy Reviews, 78, 80-92.
  • [107] Atashkari, K., Nariman-Zadeh, N., Gölcü, M., Khalkhali, A., and Jamali, A. J. E. C. (2007). Modelling and multi-objective optimization of a variable valve-timing spark-ignition engine using polynomial neural networks and evolutionary algorithms. Energy Conversion and Management, 48(3), 1029-1041.
  • [108] Ahmadi, M. H., Ahmadi, M. A., Bayat, R., Ashouri, M., and Feidt, M. (2015). Thermo-economic optimization of Stirling heat pump by using non-dominated sorting genetic algorithm. Energy Conversion and Management, 91, 315-322.
  • [109] Ahmadi, M. H., Ahmadi, M. A., Mellit, A., Pourfayaz, F., and Feidt, M. (2016). Thermodynamic analysis and multi objective optimization of performance of solar dish Stirling engine by the centrality of entransy and entropy generation. International Journal of Electrical Power and Energy Systems, 78, 88-95.
  • [110] Toghyani, S., Kasaeian, A., and Ahmadi, M. H. (2014). Multi-objective optimization of Stirling engine using non-ideal adiabatic method. Energy Conversion and Management, 80, 54-62.
  • [111] Ahmadi, M. H., Ahmadi, M. A., Pourfayaz, F., and Bidi, M. (2016). Thermodynamic analysis and optimization for an irreversible heat pump working on reversed Brayton cycle. Energy conversion and management, 110, 260-267.
  • [112] Ahmadi, M. H., Ahmadi, M. A., Mehrpooya, M., Feidt, M., and Rosen, M. A. (2016). Optimal design of an Otto cycle based on thermal criteria. Mechanics and Industry, 17(1), 111.
  • [113] Ahmadi, M. H., Ahmadi, M. A., Mohammadi, A. H., Feidt, M., and Pourkiaei, S. M. (2014). Multi-objective optimization of an irreversible Stirling cryogenic refrigerator cycle. Energy Conversion and Management, 82, 351-360.
  • [114] Ahmadi, M. H., Ahmadi, M. A., Mohammadi, A. H., Mehrpooya, M., and Feidt, M. (2014). Thermodynamic optimization of Stirling heat pump based on multiple criteria. Energy Conversion and Management, 80, 319-328.
  • [115] Ahmadi, M. H., Mohammadi, A. H., Dehghani, S., and Barranco-Jimenez, M. A. (2013). Multi-objective thermodynamic-based optimization of output power of Solar Dish-Stirling engine by implementing an evolutionary algorithm. Energy conversion and Management, 75, 438-445.
  • [116] Ahmadi, M. H., Mohammadi, A. H., and Pourkiaei, S. M. (2016). Optimisation of the thermodynamic performance of the Stirling engine. International Journal of Ambient Energy, 37(2), 149-161.
  • [117] Sayyaadi, H., Ahmadi, M. H., and Dehghani, S. (2014). Optimal design of a solar-driven heat engine based on thermal and ecological criteria. Journal of Energy Engineering, 141(3), 04014012.
  • [118] Sahraie, H., Mirani, M. R., Ahmadi, M. H., and Ashouri, M. (2015). Thermo-economic and thermodynamic analysis and optimization of a two-stage irreversible heat pump. Energy conversion and management, 99, 81-91.
  • [119] Ahmadi, M. H., Ahmadi, M. A., Mehrpooya, M., Hosseinzade, H., and Feidt, M. (2014). Thermodynamic and thermo-economic analysis and optimization of performance of irreversible four-temperature-level absorption refrigeration. Energy conversion and management, 88, 1051-1059.
  • [120] Ahmadi, M. H., and Ahmadi, M. A. (2015). Thermodynamic analysis and optimization of an irreversible Ericsson cryogenic refrigerator cycle. Energy Conversion and Management, 89, 147-155.
  • [121] Ahmadi, M. H., Ahmadi, M. A., Mehrpooya, M., and Sameti, M. (2015). Thermo-ecological analysis and optimization performance of an irreversible three-heat-source absorption heat pump. Energy Conversion and Management, 90, 175-183.
  • [122] Ahmadi, M. H., Ahmadi, M. A., and Feidt, M. (2016). Performance optimization of a solar-driven multi-step irreversible brayton cycle based on a multi-objective genetic algorithm. Oil and Gas Science and Technology–Revue d’IFP Energies nouvelles, 71(1), 16.
  • [123] Ahmadi, M. H., Ahmadi, M. A., and Feidt, M. (2015). Thermodynamic analysis and evolutionary algorithm based on multi-objective optimization of performance for irreversible four-temperature-level refrigeration. Mechanics and Industry, 16(2), 207.
  • [124] Sadatsakkak, S. A., Ahmadi, M. H., and Ahmadi, M. A. (2015). Thermodynamic and thermo-economic analysis and optimization of an irreversible regenerative closed Brayton cycle. Energy conversion and management, 94, 124-129.
  • [125] Sadatsakkak, S. A., Ahmadi, M. H., Bayat, R., Pourkiaei, S. M., and Feidt, M. (2015). Optimization density power and thermal efficiency of an endoreversible Braysson cycle by using non-dominated sorting genetic algorithm. Energy Conversion and Management, 93, 31-39.
  • [126] Ahmadi, M. H., Ahmadi, M. A., and Sadatsakkak, S. A. (2015). Thermodynamic analysis and performance optimization of irreversible Carnot refrigerator by using multi-objective evolutionary algorithms (MOEAs). Renewable and Sustainable Energy Reviews, 51, 1055-1070.
  • [127] Ahmadi, M. H., and Mehrpooya, M. (2015). Thermo-economic modeling and optimization of an irreversible solar-driven heat engine. Energy conversion and management, 103, 616-622.
  • [128] Ahmadi, M. H., Ahmadi, M. A., and Pourfayaz, F. (2015). Performance assessment and optimization of an irreversible nano-scale Stirling engine cycle operating with Maxwell-Boltzmann gas. The European Physical Journal Plus, 130(9), 190.
  • [129] Ahmadi, M. H., Ahmadi, M. A., Shafaei, A., Ashouri, M., and Toghyani, S. (2016). Thermodynamic analysis and optimization of the Atkinson engine by using NSGA-II. International Journal of Low-Carbon Technologies, 11(3), 317-324.
  • [130] Ahmadi, M. H., Dehghani, S., Mohammadi, A. H., Feidt, M., and Barranco-Jimenez, M. A. (2013). Optimal design of a solar driven heat engine based on thermal and thermo-economic criteria. Energy Conversion and Management, 75, 635-642.
  • [131] Ahmadi, M. H., Ahmadi, M. A., and Pourfayaz, F. (2016). Thermodynamic analysis and evolutionary algorithm based on multi-objective optimization performance of actual power generating thermal cycles. Applied Thermal Engineering, 99, 996-1005.
  • [132] Ahmadi, M. H., and Ahmadi, M. A. (2016). Multi objective optimization of performance of three-heat-source irreversible refrigerators based algorithm NSGAII. Renewable and Sustainable Energy Reviews, 60, 784-794.
  • [133] Hussein, A. K. (2015). Multi-objective optimization of a three-dimensional internally finned tube based on Response Surface Methodology (RSM). Journal of Thermal Engineering, 1(2), 131-142.
  • [134] Ahmadi, M. H., Nabakhteh, M. A., Ahmadi, M. A., Pourfayaz, F., and Bidi, M. (2017). Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases. Physica A: Statistical Mechanics and its Applications, 483, 337-350.
  • [135] Wong, J. Y., Sharma, S., and Rangaiah, G. P. (2016). Design of shell-and-tube heat exchangers for multiple objectives using elitist non-dominated sorting genetic algorithm with termination criteria. Applied Thermal Engineering, 93, 888-899.
  • [136] Rahdar, M. H., Heidari, M., Ataei, A., and Choi, J. K. (2016). Modeling and optimization of R-717 and R-134a ice thermal energy storage air conditioning systems using NSGA-II and MOPSO algorithms. Applied Thermal Engineering, 96, 217-227.
  • [137] Aminyavari, M., Najafi, B., Shirazi, A., and Rinaldi, F. (2014). Exergetic, economic and environmental (3E) analyses, and multi-objective optimization of a CO2/NH3 cascade refrigeration system. Applied Thermal Engineering, 65(1-2), 42-50.
  • [138] Mamaghani, A. H., Najafi, B., Shirazi, A., and Rinaldi, F. (2015). Exergetic, economic, and environmental evaluations and multi-objective optimization of a combined molten carbonate fuel cell-gas turbine system. Applied Thermal Engineering, 77, 1-11.
  • [139] Ahmadi, M. H., Jokar, M. A., Ming, T., Feidt, M., Pourfayaz, F., and Astaraei, F. R. (2018). Multi-objective performance optimization of irreversible molten carbonate fuel cell–Braysson heat engine and thermodynamic analysis with ecological objective approach. Energy, 144, 707-722.
  • [140] Ahmadi, M. H., Ahmadi, M. A., Açıkkalp, E., Alhuyi Nazari, M., Arab Pour Yazdi, M., and Kumar, R. (2018). New thermodynamic analysis and optimization of performance of an irreversible diesel cycle. Environmental Progress and Sustainable Energy, 37(4), 1475-1490.
  • [141] Mazur, V. (2007). Fuzzy thermoeconomic optimization of energy-transforming systems. Applied Energy, 84(7-8), 749-762.
  • [142] Olson, D. L. (1996). Decision aids for selection problems. Springer Science and Business Media.