THERMODYNAMIC PERFORMANCE ANALYSIS OF DEDICATED MECHANICALLY SUBCOOLED VAPOUR COMPRESSION REFRIGERATION SYSTEM

In this work, the thermodynamic analysis of dedicated mechanically subcooled vapour compression refrigeration system is presented. A software based computer program in EES has been formulated for computation of the performance results. The effect of varation of degree of subcooling (5-30oC), evaporator temperature (-20 to 10oC) and condenser temperature (30-50oC)  has been investigated for energetic and exergetic performance of the system. The analysis of the system has been carried out using zero ODP and very low GWP (1 to 4) refrigerants viz.HFO-R1234ze and R1234yf to compare the performance of HFC-R134a. The results depicts that the COP and exergetic efficiency of dedicated subcooled VCR cycle are better than that of simple VCR cycle. Refrigerant R1234ze performs better than  R1234yf and comparable to R134a.

___

  • [1] Parliament, E., and CotE, U. (2014). Regulation (EU) No 517/2014 of The European Parliament and of the council of 16 April 2014 on fluorinated greenhouse gases and repealing Regulation (EC) No 842/2006. Official J. Eur. Union, 57, 195-230.
  • [2] Zubair, S. M. (1990). Improvement of refrigeration/air-conditioning performance with mechanical sub-cooling. Energy, 15(5), 427-433.
  • [3] Zubair, S. M. (1994). Thermodynamics of a vapor-compression refrigeration cycle with mechanical subcooling. Energy, 19(6), 707-715.
  • [4] Zubair, S. M., Yaqub, M., and Khan, S. H. (1996). Second-law-based thermodynamic analysis of two-stage and mechanical-subcooling refrigeration cycles. International Journal of Refrigeration, 19(8), 506-516.
  • [5] Couvillion, R. J. (1988). Analysis of a Vapour-compression Refrigeration System with mechanical subcooling. ASHRAE Trans., 94(2), 641-660.
  • [6] Qureshi, B. A., Inam, M., Antar, M. A., and Zubair, S. M. (2013). Experimental energetic analysis of a vapor compression refrigeration system with dedicated mechanical sub-cooling. Applied Energy, 102, 1035-1041.
  • [7] Zubair, S. M. (2001). Thermodynamic optimization of finite time vapor compression refrigeration systems. Energy conversion and management, 42(12), 1457-1475.
  • [8] Thornton, J. W., Klein, S. A., and Mitchell, J. W. (1994). Dedicated mechanical subcooling design strategies for supermarket applications. International Journal of Refrigeration, 17(8), 508-515.
  • [9] Arora, A., Arora, B. B., Pathak, B. D., and Sachdev, H. L. (2007). Exergy analysis of a vapour compression refrigeration system with R-22, R-407C and R-410A. International journal of Exergy, 4(4), 441.
  • [10] Arora, A., Dixit, M., and Kaushik, S. C. (2016). Computation of optimum parameters of a half effect water lithium bromide vapour absorption refrigeration system. Journal of Thermal Engineering, 2(2), 683-692.
  • [11] Arora, A., Dixit, M., and Kaushik, S. C. (2016). Energy and exergy analysis of a double effect parallel flow LiBr/H2O absorption refrigeration system. Journal of Thermal Engineering, 2(1), 541-549.
  • [12] Arora, A., and Kaushik, S. C. (2008). Theoretical analysis of a vapour compression refrigeration system with R502, R404A and R507A. International journal of refrigeration, 31(6), 998-1005.
  • [13] Arora, A., Arora, B. B., Pathak, B. D., and Sachdev, H. L. (2007). Exergy analysis of a vapour compression refrigeration system with R-22, R-407C and R-410A. International journal of Exergy, 4(4), 441.
  • [14] Llopis, R., Cabello, R., Sánchez, D., and Torrella, E. (2015). Energy improvements of CO2 transcritical refrigeration cycles using dedicated mechanical subcooling. International Journal of Refrigeration, 55, 129-141.
  • [15] Llopis, R., Nebot-Andrés, L., Sánchez, D., Catalán-Gil, J., and Cabello, R. (2018). Subcooling methods for CO 2 refrigeration cycles. A Review. International Journal of Refrigeration.
  • [16] Mota-Babiloni, A., Navarro-Esbrí, J., Barragán-Cervera, Á., Molés, F., Peris, B., and Verdú, G. (2015). Commercial refrigeration–an overview of current status. International journal of refrigeration, 57, 186-196.
  • [17] Kalla, S. K., Arora, B. B., and Usmani, J. A. (2018). Alternative refrigerants for HCFC 22 - A review. Journal of Thermal Engineering, 4(3), 1998-2017.
  • [18] Kalla, S. K., Arora, B. B., and Usmani, J. A. (2018). Performance analysis of R22 and its substitutes in air conditioners. Journal of Thermal Engineering, 4(1), 1724-1736.
  • [19] Yataganbaba, A., Kilicarslan, A., and Kurtbaş, İ. (2015). Exergy analysis of R1234yf and R1234ze as R134a replacements in a two evaporator vapour compression refrigeration system. International journal of refrigeration, 60, 26-37.
  • [20] Bejan, A., Tsatsaronis, G., Moran, M., and Moran, M. J. (1996). Thermal design and optimization. John Wiley and Sons.
  • [21] Dincer, I., and Kanoglu, M. (2010). Refrigeration systems and applications (Vol. 2). New York: Wiley.
  • [22] Klein, S. A., and Alvarado, F. (2012) Engineering Equation Solver. F-Chart Software, Middleton, WI. Version 9, 224-3D.
  • [23] Kotas, T. J. (1995) The exergy method of thermal plant analysis, Reprint ed., Krieger Publishing Company, Krieger Drive, Malabar, Florida-32950.
  • [24] Dixit, M., Kaushik, S. C., and Arora, A. (2017) Energy and exergy analysis of absoption-compression cascade refrigeration system. Journal of Thermal Engineering, 3(5), 1466-1477.
  • [25] Dixit, M., Arora, A., and Kaushik, S. C. (2016) Energy and exergy analysis of a waste heat driven cycle for triple effect refrigeration. Journal of Thermal Engineering, 2(5), 954-961.
  • [26] Dixit, M., Kaushik, S. C., and Arora, A. (2017) Energy and exergy analysis of absoption-compression cascade refrigeration system. Journal of Thermal Engineering, 3(5), 1466-1477.