NUMERICAL INVESTIGATION OF BLOOD FLOW FEATURES IN INTRACRANIAL SACCULAR ANEURYSMS

This study aims to provide insight about how the hemodynamic factors change with artery curvature for a developing aneurysm during a cardiac cycle. The aneurysm is investigated in terms of the vortical structure and the shear stress along the curved artery wall for three developing stages (initial, intermediate and terminal stages), for three instances of a cardiac cycle (diastole end, systole peak and diastole start) and for three different vascular geometries. The stream function vorticity formulation is used with Newtonian constitutive relation. During the systole peak instance for all aneurysm stages, the central vortex squeezes the streamlines towards the distal neck of the aneurysm leading to maximum wall shear stress in the vicinity of the distal wall of the aneurysm. The radius of curvature of the artery and inertial forces increased the wall shear stress along the aneurysm wall. The wall shear stress changes direction and concentrates in the vicinity of the distal neck for all artery geometries. Secondary vortices are observed in the terminal stage during diastole end and diastole start instances for the straight arteries and lead to shear stress fluctuations along the wall. The observations of this study are discussed together with the relevant clinical and numerical literature.

___

  • [1] Kassell, N. F., Torner, J. C., Haley Jr, E. C., Jane, J. A., Adams, H. P., Kongable, G. L. Participants. (1990). The International Cooperative Study on the Timing of Aneurysm Surgery: Part 1: Overall management results. Journal of Neurosurgery, 73(1), 18-36.
  • [2] Steiger, H. J., Reulen, H. J. (1986). Low frequency flow fluctuations in saccular aneurysms. Acta Neurochirurgica, 83(3), 131-137.
  • [3] Ferguson, G. G. (1970). Turbulence in human intracranial saccular aneurysms. Journal of Neurosurgery, 33(5), 485-497.
  • [4] M. Aenis, A.P. Stancampiano, A.K. Wakhloo, A.B. Lieber. (1997). Modeling of flow in a straight stended and nonstended side wall aneurysm model. Journal of Biomedical Engineering, (119), 206-212.
  • [5] Milner, J. S., Moore, J. A., Rutt, B. K., Steinman, D. A. (1998). Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects. Journal of Vascular Surgery, 28(1), 143-156.
  • [6] Y. S. Zhang, X. J. Yang, S. Z. Wang, A, Qiao, J. I. Chang, K. Y. Zhang, Z. C. Liu, Y. J. Zhao, Y. Zhang, B. Luo, C. H. Li. (2010). Hemodynamic effects of stenting on wide-necked intracranial aneurysms. Chinese Medical Journal, 123(15), 1999-2003.
  • [7] Shishir, S. S., Miah, M. A. K., Islam, A. S., Hasan, A. T. (2015). Blood Flow Dynamics in Cerebral Aneurysm-A CFD Simulation. Procedia Engineering, 105, 919-927.
  • [8] Meng, H., Wang, Z., Kim, M., Ecker, R. D., Hopkins, L. N. (2015). Saccular aneurysms on straight and curved vessels are subject to different hemodynamics: implications of intravascular stenting. American Journal of Neuroradiology, 27(9), 1861-1865.
  • [9] Gonzalez, C. F., Cho, Y. I., Ortega, H. V., Moret, J. (1992). Intracranial aneurysms: flow analysis of their origin and progression. American Journal of Neuroradiology, 13(1), 181-188.
  • [10] Valencia, A., Solis, F. (2006). Blood flow dynamics and arterial wall interaction in a saccular aneurysm model of the basilar artery. Computers & Structures, 84(21), 1326-1337.
  • [11] Gijsen, F. J. H., Allanic, E., Van de Vosse, F. N., Janssen, J. D. (1999). The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90 curved tube. Journal of Biomechanics, 32(7), 705-713.
  • [12] Mercan, H., Atalik, K. (2011). Flow structure for Power-Law fluids in lid-driven arc-shape cavities. Korea-Australia Rheology Journal, 23(2), 71-80.
  • [13] Bouillot, P., Brina, O., Ouared, R., Yilmaz, H., Lovblad, K. O., Farhat, M., Pereira, V. M. (2014). Computational fluid dynamics with stents: quantitative comparison with particle image velocimetry for three commercial off the shelf intracranial stents. Journal of Neurointerventional Surgery, Neurintsurg.
  • [14] Bouillot, P., Brina, O., Ouared, R., Lovblad, K. O., Farhat, M., Pereira, V. M. (2014). Particle imaging velocimetry evaluation of intracranial stents in sidewall aneurysm: hemodynamic transition related to the stent design. PLoS One, 9(12), e113762.
  • [15] Shojima, M., Oshima, M., Takagi, K., Torii, R., Hayakawa, M., Katada, K., Kirino, T. (2004). Magnitude and role of wall shear stress on cerebral aneurysm. Stroke, 35(11), 2500-2505.
  • [16] Bogren, H. G., Mohiaddin, R. H., Yang, G. Z., Kilner, P. J., Firmin, D. N. (1995). Magnetic resonance velocity vector mapping of blood flow in thoracic aortic aneurysms and grafts. The Journal of Thoracic and Cardiovascular Surgery, 110(3), 704-714.
  • [17] Tse, K. M., Chiu, P., Lee, H. P., Ho, P. (2011). Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations. Journal of Biomechanics, 44(5), 827-836.
  • [18] Humphrey, J. D., Taylor, C. A. (2008). Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu. Rev. Biomed. Eng., 10, 221-246.
  • [19] Humphrey, J. D. (2009). Coupling hemodynamics with vascular wall mechanics and mechanobiology to understand intracranial aneurysms. International Journal of Computational Fluid Dynamics, 23(8), 569-581.
  • [20] Di Achille, P., Humphrey, J. D. (2012). Toward large-scale computational fluid-solid-growth models of intracranial aneurysms. The Yale Journal of Biology and Medicine, 85(2), 217.
  • [21] Mei, Y., Chan, I., Chen, D., Watton, P. (2017). A novel Fluid-Solid-Growth-Transport (FSGT) framework for modeling the evolution of intracranial aneurysm disease. In Proceedings of the 5th International Conference on Computational & Mathematical Biomedical Engineering, 1271-1272.