PORTABLE SOLAR DRYING SYSTEM WITH INBUILT PV MODULE FOR STANDALONE FORCED CONVECTION OPERATION

A portable solar drying system with inbuilt PV module has been designed, fabricated and installed at Rajeev Gandhi Memorial College of Engineering & Technology, Nandyal, Andhra Pradesh. It is having a 1.1304 m2 absorber area and 3 m2 drying area. The dryer could accommodate 10 numbers of trays of size 0.3 m2). The brushless direct current (BLDC) motor fans of two 3 W capacity were operated directly from the energy generated by the PV panel of 10 W capacity installed in the solar dryer. As a part of the single batch load test performance analysis was tested using 3 kg of freshly harvested Fenugreek, Spinach, Chilli. After 6 h drying, 75 to 90 % of moisture has been removed where the solar radiation intensity measured was between 600-800 W/m2. Thus it is concluded that besides decreasing the overall transportation costs, the solar dryer with on-site efficient drying capability of food crops is highly beneficial in reducing the damage of produce and could retain sufficient nutrients.

___

  • [1] Nayak S, Tiwari GN. Energy and exergy analysis of photovoltaic/thermal integrated with a solar greenhouse. Energy and Buildings 2008; 40: 2015–2021. doi:10.1016/j.enbuild.2008.05.007.
  • [2] Rathore NS, Panwar NL. Experimental studies on hemi cylindrical walk-in type solar tunnel dryer for grape drying. Applied Energy 2010; 87: 2764–2767. doi:10.1016/j.apenergy.2010.03.014.
  • [3] Singh S, Kumar S. Testing method for thermal performance based rating of various solar dryer designs. Solar Energy 2012; 86: 87-98. doi:10.1016/j.solener.2011.09.009.
  • [4] Amori KE, Hussein M, Al-Najjar T. Analysis of thermal and electrical performance of a hybrid (PV/T) air based solar collector for Iraq. Applied Energy 2012; 98:384–395. doi:10.1016/j.apenergy.2012.03.061.
  • [5] Barnwal P, Tiwari GN. Grape drying by using hybrid photovoltaic-thermal (PV/T) greenhouse dryer: An experimental study. Solar Energy 2008; 82: 1131–1144. doi:10.1016/j.solener.2008.05.012.
  • [6] Sevik S. Experimental investigation of a new design solar-heat pump dryer under the different climatic conditions and drying behavior of selected products. Solar Energy 2014; 105: 190–205. doi:10.1016/j.solener.2014.03.037.
  • [7] Sarhaddi F, Farahat S, Ajam H, Behzadmehr A, Adeli M. An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector. Applied Energy 2010; 87: 2328–2339. doi:10.1016/j.apenergy.2010.01.001
  • [8] Kumar R, Rosen MA. Performance evaluation of a double pass PV/T solar air heater with and without fins. Applied Thermal Engineering 2011; 31: 1402-1410. doi:10.1016/j.applthermaleng.2010.12.037.
  • [9] Janjai S, Lamlert N, Intawee P, Mahayothee B, Bala BK, Nagle M, Muller J. Experimental and simulated performance of a PV-ventilated solar greenhouse dryer for drying of peeled longan and banana. Solar Energy 2009; 83: 1550–1565. doi:10.1016/j.solener.2009.05.003.
  • [10] Hussein AK. Application of Nanotechnology in Renewable Energies-A comprehensive overview and understanding. Renewable and Sustainable Energy Reviews 2015; 42: 460-476. doi:10.1016/j.rser.2014.10.027
  • [11] Hussein AK, Walunj A, kolsi L. Applications of Nanotechnology to enhance the performance of the direct absorption solar collectors. Journal of Thermal Engineering 2016; 2: 529-540. doi:10.18186/jte.46009.
  • [12] Li D, Li Z, Zheng Y, Liu C, Hussein AK, And Liu X. Thermal performance of a PCM-filled double glazing unit with different termo-physical parameters of PCM. Solar energy 2016; 133: 207-220. doi:10.1016/j.solener.2016.03.039.
  • [13] Hussein AK. Applications of nanotechnology to improve the performance of solar collectors-Recent advances and overview. Renewable and Sustainable Energy Reviews 2016; 62: 767-792. doi:10.1016/j.rser.2016.04.050.
  • [14] Hussein AK, Li D, kolsi L, Kata S, Sahoo B. A review of nano fluid role to improve the performance of the heat pipe solar collectors. Energy Procedia 2017; 109 : 417-424. doi:10.1016/j.egypro.2017.03.044.
  • [15] Tyagi VV, Kaushik SC, Tyagi SK. Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology. Renewable and Sustainable Energy Reviews 2012; 16: 1383-1398. doi:10.1016/j.rser.2011.12.013.
  • [16] Yusof MH, Othman, Yatim B, Sopian K, Mohd NAB. Performance analysis of a double-pass photovoltaic/thermal (PV/T) solar collector with CPC and fins. Renewable Energy 2005; 30: 2005-2017. doi:10.1016/j.renene.2004.10.007.
  • [17] Zhang X, Zhao X, Smith S, Xu J, Yu X. Review of R&D progress and practical application of the solar photovoltaic/thermal (PV/T) technologies. Renewable and Sustainable Energy Reviews 2012; 16: 599-617. doi:10.1016/j.rser.2011.08.026.