THE EFFECT OF THE USE OF DIFFERENT COVER MATERIALS ON HEAT TRANSFER IN FLAT SOLAR COLLECTORS

In this study, combined thermal radiation and natural convection heat transfer from glass and plastic cover flat solar collectors is examined by varying tilt angle and cover materials. The flat-plate solar collector tilt angle is varied from 0º to 45º. The performance of glass, lexan, and acrylic cover materials is investigated. Numerical simulations have been performed for various solar collector thicknesses exposed to external ambient temperature and wind heat transfer coefficient. Continuity, momentum and the energy equations, along with the Boussinesq approach, are solved with the finite volume method using the SIMPLE algorithm. The cover temperature and the top loss coefficient are calculated for each cover material, collector tilt angle and bottom plate temperature, wind heat transfer coefficient and external ambient temperature. The flow and temperature field are obtained, and the mean convection and radiation Nusselt numbers are calculated for the bottom plate. The analytically and numerically computed glass cover temperatures are found to be in perfect agreement. The top loss coefficient of the plastic cover is lower than that of the glass cover. It is determined that with increasing heat input from the bottom plate, the top loss coefficient and the mean cover material temperature increase linearly. As the external ambient temperature increases, the top loss coefficient and the cover material temperature do not present any significant change.

___

  • [1] Addeo, A., Campanile, G., Nicolais, L., Romeo, G. Plastic solar collectors for ‘low energy’ applications. Appl Energ 1980; 6(4): 265-74. https://doi.org/10.1016/0306-2619(80)90017-3.
  • [2] Sodha, M., Bansal, N. K., Singh, D. Analysis of a black liquid flat plate solar collector. Int J Energ Res 1984; 8(1): 31-7. https://doi.org/10.1002/er.4440080104.
  • [3] Bansal, N. K., Kumar, A., Singh, S. P. Thermal performance of plastic film solar air and water heaters. Int J Energ Res 1987; 11(1): 35-43. https://doi.org/10.1002/er.4440110104.
  • [4] Van Niekerk, W. V., Scheffler, B. Measured performance of a solar water heater with a parallel tube polymer absorber. Sol Energy 1993; 51(5): 339–47. https://doi.org/10.1016/0038-092X(93)90146-F.
  • [5] Akhtar, N., Mullick, S. C. Approximate method for computation of glass cover temperature and top heatloss coefficient of solar collectors with single glazing. Sol Energy 1999; 66(5): 349-54. https://doi.org/10.1016/S0038-092X(99)00032-8.
  • [6] Akhtar, N., Mullick, S. C. Effect of absorption of solar radiation in glass-cover(s) on heat transfer coefficients in upward heat flow in single and double glazed flat-plate collectors. Int J Heat Mass Tran 2012; 55(1-3): 125-32. https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.048.
  • [7] Kumar, S., Mullick, S. C. Glass cover temperature and top heat loss coefficient of a single glazed flat plate collector with nearly vertical configuration. Ain Shams Eng J 2012; 3(3): 299-304. https://doi.org/10.1016/j.asej.2012.03.008.
  • [8] Samdarshi, S. K., Mullick, S. C. Analytical equation for the top heat loss factor of a flat-plate collector with double glazing. J Sol Energy Eng 1991; 113(2): 117-22. https://doi.org/10.1115/1.2929955.
  • [9] Ferahta, F. Z., Bougoul, S., Ababsa, D., Abid, C. Numerical study of the convection in the air gap of a solar collector. Enrgy Proced 2011; 6(2011): 176-84. https://doi.org/10.1016/j.egypro.2011.05.021.
  • [10] Subiantoro, A., Tiow, O. K. Analytical models for the computation and optimization of single and double glazing flat plate solar collectors with normal and small air gap spacing. Appl Energ 2013; 104: 392-99. https://doi.org/10.1016/j.apenergy.2012.11.009.
  • [11] Kumar, S., Mullick, S. C. Wind heat transfer coefficient in solar collectors in outdoor conditions. Sol Energy 2010; 84(6): 956-63. https://doi.org/10.1016/j.solener.2010.03.003.
  • [12] Hematian, A., Bakhtiari, A. A. Efficiency analysis of an air solar flat plate collector in different convection modes. Int J Green Energy 2015; 12(9): 881-7. doi: 10.1080/15435075.2014.940621.
  • [13] Wu, S. Y., Zhang, H., Xiao, L., Qiu, Y. Experimental investigation on convection heat transfer characteristics of flat plate under environmental wind condition. Int J Green Energy 2016; 14(3): 317-29. https://doi.org/10.1080/15435075.2016.1259164.
  • [14] Stanciu, C., Stanciu, D. Optimum tilt angle for flat plate collectors all over the World – A declination dependence formula and comparisons of three solar radiation models. Energ Convers Manage 2014; 81: 133-43. https://doi.org/10.1016/j.enconman.2014.02.016.
  • [15] Jiandog, Z., Hanzhong, T., Susu, C. Numerical simulation for structural parameters of flat-plate solar collector. Sol Energy 2015; 117: 192-202. doi: 10.1016/j.solener.2015.04.027.
  • [16] Aravindh, M. A., Sreekumar, A. Efficiency enhancement in solar air heaters by modification of absorber plate-A Review. Int J Green Energy 2016; 13(12): 1209-23. doi:10.1080/15435075.2016.1183207.
  • [17] Jannot, Y., Coulibaly, Y. Radiative heat transfer in a solar air heater covered with a plastic film. Sol Energy 1997; 60(1): 35-40. doi:10.1016/S0038-092X(96)00145-4.
  • [18] Khoukhi, M., Maruyama, S. Theoretical approach of a flat-plate solar collector taking into account the absorption and emission within glass cover layer. Sol Energy 2006; 80(7): 787-94. https://doi.org/10.1016/j.renene.2004.09.014.
  • [19] El-Sebaii, A.A., Al-Snani, H. Effect of selective coating on thermal performance of flat plate solar air heaters. Energy 2010; 35: 1820-8. https://doi.org/10.1016/j.energy.2009.12.037.
  • [20] Alghoul, M. A., Sulaiman, M.Y., Azmi, B.Z., Wahab, M.Abd. Review of materials for solar thermal collectors. Anti-Corrosion Methods and Materials 2005; 52(4): 199-206. doi:10.1108/00035590510603210.
  • [21] Giovannetti, F., Foste, S., Ehrmann, N., Rockendorf, G. High transmittance, low emissivity glass covers for flat plate collectors: Applications and performance. Sol Energy 2014; 104: 52-9. https://doi.org/10.1016/j.solener.2013.10.006.
  • [22] Otanicar, T.P., Phelan, P.E., Prasher, R.S., Rosengarten, G., Taylor, R.A. Nanofluid-Based direct absorption solar collector. J Renew Sustain Ener 2010; 2(3): 1-13. https://doi.org/10.1063/1.3429737.
  • [23] Karami, M., Bahabadi, M.A., Delfani, S., Ghozatloo, A. A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector. Sol Energ Mat Solar C 2014; 121: 114-118. https://doi.org/10.1016/j.solmat.2013.11.004.
  • [24] Ahlatli, S., Mare, T., Estelle, P., Doner, N. Thermal performance of carbon nanotube nanofluids in solar microchannel collectors: An Experimental Study. Int J Techn 2016 (2), 219-226. doi:10.14716/ijtech.v7i2.1575
  • [25] Roy, S., Asirvatham, L. G., Kunhappan, D., Cephas, E., Wongwises, S. Heat Transfer Performance of Silver/Water. J Therm Eng 2015; 1 (2): 104-12. doi: 10.18186/jte.29475.
  • [26] Hussein, A. K., Walunj, A. A., Kolsi, L. Applications of Nanotechnology to Enhance the Performance of the Direct Absorption Solar Collectors. J Therm Eng 2016; 2 (1): 529-40. doi:10.18186/jte.46009.
  • [27] M. Modest. Radiative heat transfer. New York: McGraw-Hill Press; 1993.
  • [28] Fluent Inc. FLUENT 6.1 User’s Guide. Lebanon: NH; 2003.
  • [29] O'Brien-Bernini, F.C., McGowan, J.G. Performance modeling of non-metallic flat plate solar collectors. Sol Energy 1984; 33: 305-19. https://doi.org/10.1016/0038-092X(84)90161-0.
  • [30] Genc, A.M., Ezan, M.A., Turgut, A. Thermal performance of a nanofluid-based flat plate solar collector: a transient numerical study. Appl Therm Eng 2018; 130: 395-407. https://doi.org/10.1016/j.applthermaleng.2017.10.166.
  • [31] http://www.matweb.com/index.aspx. (Data sheets for over 125000 metals, plastics, ceramics, and composites.)