IMPROVEMENT OF THERMAL ENERGY STORAGE BY INTEGRATING PCM INTO SOLAR SYSTEM

The solar heater is a system that generates hot water by converting solar energy to thermal energy. In these last few years, various ways have been developed to gather this natural energy. However, they can not be able to store the energy when the sun disappears. In this study, thermal system based on phase change materials that improves the hot water production and stores thermal energy is proposed. In order to describe phase change materials and considers the effects of inclination angle on the production and storing thermal energy a numerical study has been carried out using the ANSYS-Fluent software. In addition, details concerning the choice of calculation range, mesh size, boundary conditions and turbulence model have been provided. The numerical results have been compared with previous data that was very promising.

___

  • [1] Kerme ED, Kaneesamkandi Zakariya. Performance Analysis and Design of Liquid Based Solar Heating System. J Therm Eng 2015;1:182–91. https://doi.org/10.18186/jte.02359.
  • [2] Yildirim C, Tümen Özdil NF. Theoretical investigation of a solar air heater roughened by ribs and grooves. J Therm Eng 2018;4:1702–12. https://doi.org/10.18186/journal-of-thermal-engineering.365713.
  • [3] Bhargav H, Ramani B, Siva Reddy V, Lai FC. Development of semi-continuous solar powered adsorption water chiller for food preservation. J Therm Eng 2018;4:2169–87. https://doi.org/10.18186/journal-of-thermalengineering.434032.
  • [4] Surana KS, Joy AD, Quiros LA, Reddy JN. Mathematical models and numerical solutions of liquid-solid and solid-liquid phase change. J Therm Eng 2015;1:61–98. https://doi.org/10.18186/jte.71504.
  • [5] Nourbakhsh A, Bayareh M. Study of the effect of the porous plates on the tank bottom on the boiling process. J Therm Eng 2019;5:149–56. https://doi.org/10.18186/thermal.540120.
  • [6] Reddy K, Mudgal V, Mallick T. Thermal Performance Analysis of Multi-Phase Change Material LayerIntegrated Building Roofs for Energy Efficiency in Built-Environment. Energies 2017;10:1367. https://doi.org/10.3390/en10091367.
  • [7] Nayak AO, Gowtham M, Vinod R, Ramkumar G. Analysis of PCM Material in Thermal Energy Storage System. Int J Environ Sci Dev 2011;01078:437–41. https://doi.org/10.7763/IJESD.2011.V2.165.
  • [8] Wang Z, Zhang H, Dou B, Zhang G, Wu W, Zhou L. An experimental study for the enhancement of stratification in heat-storage tank by equalizer and PCM module. J Energy Storage 2020;27:101010. https://doi.org/10.1016/j.est.2019.101010.
  • [9] Korti AIN. Numerical simulation on the effect of latent heat thermal energy storage unit. J Therm Eng 2016;2:599–607. https://doi.org/10.18186/jte.00934.
  • [10] Pagkalos C, Dogkas G, Koukou MK, Konstantaras J, Lymperis K, Vrachopoulos MG. Evaluation of water and paraffin PCM as storage media for use in thermal energy storage applications: A numerical approach. Int J Thermofluids 2020;1–2:100006. https://doi.org/10.1016/j.ijft.2019.100006.
  • [11] Elfeky KE, Li X, Ahmed N, Lu L, Wang Q. Optimization of thermal performance in thermocline tank thermal energy storage system with the multilayered PCM(s) for CSP tower plants. Appl Energy 2019;243:175–90. https://doi.org/10.1016/j.apenergy.2019.03.182.
  • [12] Li Y, Zhang N, Ding Z. Investigation on the energy performance of using air-source heat pump to charge PCM storage tank. J Energy Storage 2020;28:101270. https://doi.org/10.1016/j.est.2020.101270.
  • [13] Elbahjaoui R, El Quarnia H. Optimisation D’Une Unite De Stockage D’Energie Solaire Par Chaleur Latente De Fusion Utilisant La Cire De Paraffine (Praffin Wax P116 ). 12ème Congrès de Mécanique 2015;21-24 Avri:1–3.
  • [14] Ünal F, Temir G, Köten H. Energy, exergy and exergoeconomic analysis of solar-assisted vertical ground source heat pump system for heating season. J Mech Sci Technol 2018;32:3929–42. https://doi.org/10.1007/s12206-018-0744-1.
  • [15] Zhao J, Ji Y, Yuan Y, Zhang Z, Lu J. Energy-Saving Analysis of Solar Heating System with PCM Storage Tank. Energies 2018;11:237. https://doi.org/10.3390/en11010237.
  • [16] Beemkumar N, Karthikeyan A, Keshava Reddy KS, Rajesh K, Anderson A. Analysis of Thermal Energy Storage Tank by ANSYS and Comparison with Experimental Results to Improve its Thermal Efficiency. IOP Conf Ser Mater Sci Eng 2017;197. https://doi.org/10.1088/1757-899X/197/1/012039.
  • [17] Yilbas BS, Siddiqui OK. Volumetric solar absorber and performance characteristics. J Therm Eng 2015;1:152– 8. https://doi.org/10.18186/jte.09757.
  • [18] Bondareva NS, Sheremet MA. Numerical simulation of natural convection melting in 2D and 3D enclosures. J Therm Eng 2019;5:51–61. https://doi.org/10.18186/thermal.513015.
  • [19] Mohammed MAP, Tarleton E, Charalambides MN, Williams JG. Mechanical characterization and micromechanical modeling of bread dough. J Rheol (N Y N Y) 2013;57:249–72. https://doi.org/10.1122/1.4768463.
  • [20] Chan CW, Tan FL. Solidification inside a sphere - An experimental study. Int Commun Heat Mass Transf 2006;33:335–41. https://doi.org/10.1016/j.icheatmasstransfer.2005.10.010.
  • [21] Ben Zohra M, Riad A, Alhamany A, Sennoune M. Coupled thermo-fluidic model for thermal energy storage based on liquid solid phase change. Mater Res Express 2020;7:0–12. https://doi.org/10.1088/2053-1591/ab73fc.
  • [22] Tian Y, Zhao C-Y. Heat transfer analysis for phase change materials (PCMs) 2009:1–8.
  • [23] Petrone G. CL and CG. Numerical simulation of pcm melting process 2012:469–74.
  • [24] Koller M, Walter H, Hameter M. Transient numerical simulation of the melting and solidification behavior of NaNo3using awire matrix for enhancing the heat transfer. Energies 2016;9. https://doi.org/10.3390/en9030205.
  • [25] Vlachopoulos J, Strutt D. Basic Heat Transfer and some applications ind polymer processing. Plast Tech Toolbox 2002;2:21–33.
  • [26] Benbrika M, Benbelhout M, Teggar M. Amélioration de l ’ efficacité thermique d ’ un chauffe -eau solaire par l ’ utilisation de matériaux à changement de phase ( MCP ). Int J Sci Res Eng Technol 2015;Vol.4 pp.1.
  • [27] Saw CL, Al-Kayiem HH, Owolabi AL. Experimental investigation on the effect of PCM and Nano-enhanced PCM of integrated solar collector performance. WIT Trans Ecol Environ 2013;179 VOLUME:899–909. https://doi.org/10.2495/SC130762.
  • [28] Younsi Z, Joulin A, Zalewski L, Rousse D. Analyse Numérique De La Fusion De Matériaux À Changement De Phase Dans Une Enceinte. IXème Colloq Interuniv Fr Sur La Therm Des Systèmes 2009.
  • [29] Augspurger M, Udaykumar HS. A Cartesian grid solver for simulation of a phase-change material (PCM) solar thermal storage device. Numer Heat Transf Part B Fundam 2016;69:179–96. https://doi.org/10.1080/10407790.2015.1097106.
  • [30] Yadav A, Soni S. Simulation of Melting Process of a Phase Change Material (PCM) using ANSYS (Fluent). Int Res J Eng Technol 2017:2395–56.
  • [31] Yang XH, Tan SC, He ZZ, Liu J. Finned heat pipe assisted low melting point metal PCM heat sink against extremely high power thermal shock. Energy Convers Manag 2018;160:467–76. https://doi.org/10.1016/j.enconman.2018.01.056.
  • [32] Ponshanmugakumar A, Scholar R, Madhan R, Narayanan AL, Rajavel R. Thermal Energy analysis using TRNSYS in PCM Storage Tank. Int J Futur Revolut Comput Sci Commun Eng n.d.:1–5.
  • [33] Ezan MA, Ozdogan M, Gunerhan H, Erek A, Hepbasli A. Energetic and exergetic analysis and assessment of a thermal energy storage (TES) unit for building applications. Energy Build 2010;42:1896–901. https://doi.org/10.1016/j.enbuild.2010.05.025.
  • [34] Joneidi MH, Hosseini MJ, Ranjbar AA, Bahrampoury R. Experimental investigation of phase change in a cavity for varying heat flux and inclination angles. Exp Therm Fluid Sci 2017;88:594–607. https://doi.org/10.1016/j.expthermflusci.2017.07.017.