EXPERIMENTAL INVESTIGATION ON THERMAL BEHAVIOR OF HYBRID SINGLE SLOPE SOLAR STILL

Solar energy is one of the most common and eco-friendly non-conventional types of energy source which is having various applications like purification of saline water. The experimental study of the present research work has been performed at the M.A.N.I.T, Bhopal M.P, India (latitude: 23°12′ 51″ N, longitude: 77° 25′ 0″ E) in the month of January 2018. The investigation has been performed on single slope solar still coupled with a flat plate solar collector to examine the thermal behaviour of the solar system and results have been presented in natural and forced convection mode. The overall efficiency reached up to 9.86% in natural mode where as 16.70% in forced mode. Therefore, forced mode solar still option is better and preferred.

___

  • [1] Agrawal A, Rana RS, Srivastava PK. Heat transfer coefficients and productivity of a single slope single basin solar still in Indian climatic condition: Experimental and theoretical comparison. Resource-Efficient Technologies. 2017 Dec 1;3(4):466-82. https://doi.org/10.1016/j.reffit.2017.05.003.
  • [2] Tripathi R, Tiwari GN. Effect of water depth on internal heat and mass transfer for active solar distillation. Desalination. 2005 Mar 10;173(2):187-200. https://doi.org/10.1016/j.desal.2004.08.032.
  • [3] Sandeep A, Archana K, Ellappan S, Mallesham D. Advancement Of Solar Selective Dlc Coating Using Capvd For Solar Thermal Applications. Journal of Thermal Engineering. 2020 Jul;6(4):422-37. https://doi.org/10.18186/thermal.734719.
  • [4] Mahian O, Kianifar A, Jumpholkul C, Thiangtham P, Wongwises S, Srisomba R. Solar distillation practice for water desalination systems. Journal of Thermal Engineering. 2015 Oct 1;1(4):287-8. https://doi.org/10.18186/jte.93924.
  • [5] Rani A, Suresh S, Kumar A. (2019). Different Techniques for Separation of Brackish Water. Asian Journal of Chemistry 31 (1), 9-17. https://doi.org/10.14233/ajchem.2019.21614.
  • [6] Tiwari AK, Tiwari GN. Effect of water depths on heat and mass transfer in a passive solar still: in summer climatic condition. Desalination. 2006 Aug 5;195(1-3):78-94. https://doi.org/10.1016/j.desal.2005.11.014.
  • [7] Rahbar N, Esfahani JA. Estimation of convective heat transfer coefficient in a single-slope solar still: a numerical study. Desalination and water treatment. 2012 Dec 1;50(1-3):387-96.
  • [8] Kumar S, Tiwari GN. Estimation of convective mass transfer in solar distillation systems. Solar energy. 1996 Dec 1;57(6):459-64.
  • [9] Khaoula H, Ali B, Bechir C, Sathyamurthy R. Comparative Study for Evaluation of Mass Flow Rate for Simple Solar Still and Active with Heat Pump. Journal of Water and Environmental Nanotechnology. 2017 Jul 1;2(3):157-65. https://doi.org/10.22090/JWENT.2017.03.003.
  • [10] Kumar S, Tiwari GN. Estimation of internal heat transfer coefficients of a hybrid (PV/T) active solar still. Solar Energy. 2009 Sep 1;83(9):1656-67. https://doi.org/10.1016/j.solener.2009.06.002.
  • [11] Dwivedi VK, Tiwari GN. Comparison of internal heat transfer coefficients in passive solar stills by different thermal models: an experimental validation. Desalination. 2009 Sep 30;246(1-3):304-18. https://doi.org/10.1016/j.desal.2008.06.024.
  • [12] Phadatare MK, Verma SK. Effect of cover materials on heat and mass transfer coefficients in a plastic solar still. Desalination and Water Treatment. 2009 Feb 1;2(1-3):254-9. https://doi.org/10.5004/dwt.2009.290.
  • [13] Kumar KV, Bai RK. Performance study on solar still with enhanced condensation. Desalination. 2008 Sep 30;230(1-3):51-61. https://doi.org/10.1016/j.desal.2007.11.015.
  • [14] Sakthivel M, Shanmugasundaram S, Alwarsamy T. An experimental study on a regenerative solar still with energy storage medium—Jute cloth. Desalination. 2010 Dec 15;264(1-2):24-31. https://doi.org/10.1016/j.desal.2010.06.074.
  • [15] Chauhan PS, Kumar A, Nuntadusit C. Thermo-environomical and drying kinetics of bitter gourd flakes drying under north wall insulated greenhouse dryer. Solar Energy. 2018 Mar 1;162:205-16.
  • [16] Tiwari S, Tiwari GN. Thermal analysis of photovoltaic-thermal (PVT) single slope roof integrated greenhouse solar dryer. Solar Energy. 2016 Nov 15;138:128-36.
  • [17] Tiwari S, Tiwari GN, Al-Helal IM. Performance analysis of photovoltaic–thermal (PVT) mixed mode greenhouse solar dryer. Solar Energy. 2016 Aug 1;133:421-8. https://doi.org/10.1016/j.solener.
  • [18] Tiwari GN. Solar energy: fundamentals, design, modelling and applications 9th edition, Narosha publishing house, New Delhi. 2012.
  • [19] Rani A, Suresh S, Kumar A. (2019). “Review on Thermal Modeling of Solar Desalination Systems.” Research Journal of Chemistry 23(4), 90-102.
  • [20] Cooper PI. Digital simulation of experimental solar still data. Solar Energy. 1973 Mar 1;14(4):451-68.