ANALYSIS OF A HYBRID CASCADED LATENT/SENSIBLE STORAGE SYSTEM FOR PARABOLIC-TROUGH SOLAR THERMAL PLANTS

The molten-salt two-tank system is the state-of-the-art thermal storage technology employed in the more mature parabolic-trough solar thermal power generation using synthetic oil as the heat-transfer fluid (HTF). This storage technology requires high storage-material inventory, making it very expensive. The use of latent-heat storage (LHS) system offers smaller storage size and material inventory. However, such a storage system faces two challenges: there are limited number of commercially-available phase-change materials (PCMs) are suitable in the operating temperature range; and these materials have very low thermal conductivities. The use of finned tubes, nevertheless, can overcome the later shortcoming. In this study, the analysis of a hybrid storage system, consisting of a three cascaded finned-tube LHS stages and a sensible concrete tube register stage, was carried out through modelling and simulation. A procedure for the design of the finned-tube cascaded LHS stages was developed. For a typical 50 MW parabolic-trough solar thermal power plant, the dimensions of a storage system with 6 hours of operation at full load were obtained. The three-stage cascaded LHS sub-system provides 45.5% of the total storage capacity of the entire system and has a volumetric specific capacity of 54% greater than that of the two-tank system. The volumetric specific capacity of the entire storage system is 9.3% greater than that of the two-tank system.

___

  • [1] De Laquil, P., Kearney, D., Geyer, M. and Diver, R. (1993). Solar-Thermal Electric Technology", in Renewable energy: sources for fuels and electricity, Earthscan, London, pp. 213-296.
  • [2] Marquez, C. (2008), An Overview of CSP in Europe, North Africa and the middle East, CSP Today
  • [3] ENEA (2011), Renewable Energy Sources, available at: www.enea.it (accessed 12/05/2014).
  • [4] Eck, M. and Zarza, E. (2006). Saturated steam process with direct steam generating parabolic troughs, Solar Energy, 80 (11), 1424-1433. https://doi.org/10.1016/j.solener.2006.03.011
  • [5] Zarza, E., Rojas, M. E., González, L., Caballero, J. M. and Rueda, F. (2006). INDITEP: The first pre-commercial DSG solar power plant, Solar Energy, 80 (10), 1270-1276. https://doi.org/10.1016/j.solener.2005.04.019
  • [6] Zarza, E., Lopez, C. W., Camara, A., Martinez, A., Burgaleta, J. I., Martin, J. C. and Fresneda, A. (2008), Almeria GDV- The first solar power plant with direct steam generation.", 14th Biennial CSO SolarPACES (Solar Power and Chemical Energy Systems) Symposium, 4-7 March, Las Vegas (USA).
  • [7] EurObserv’ER (2013). The state of renewable energies in Europe: The 13th EurObserv’ER Report, EurObserv’ER, Paris.
  • [8] NREL (2014). Concentrating solar power projects, available at: www.nrel.gov (accessed 02/21).
  • [9] Dinter, F., Geyer, M. A. and Tamme, R. (1991). Thermal energy storage for commercial applications, Springer-Verlag, New York.
  • [10] Hunold, D., Ratzesberger, R. and Tamme, R. (1992). Heat transfer mechanisms in latent-heat thermal energy storage for medium temperature applications, Proceedings of the 6th International Symposium on Solar Thermal Concentrating Technologies, Majocar, Spain, pp. 475.
  • [11] Pilkington (2000). Survey of thermal storage for parabolic trough power plants, NREL/SR-550-27925, National Renewable Energy Laboratory, Colorado, USA.
  • [12] Michels, H. and Pitz-Paal, R. (2007). Cascaded latent heat storage for parabolic trough solar power plants, Solar Energy, 81 (6), 829-837. https://doi.org/10.1016/j.solener.2006.09.008
  • [13] Liu, M., Tay, N. H. S., Belusko M., Bruno, F., (2015). Investigation of Cascaded Shell and Tube Latent Heat Storage Systems for Solar Tower Power Plants, Energy Procedia, 69, 913-924. https://doi.org/10.1016/j.egypro.2015.03.175
  • [14] Chirino H., Xu, B., Xu, X.. Parametric study of cascade latent heat thermal energy storage (CLHTES) system in Concentrated Solar Power (CSP) plants, Journal of the Energy Institute, Article in press https://doi.org/10.1016/j.joei.2018.03.007
  • [15] Saeed Mostafavi Tehrani, S., Shoraka, Y., Nithyanandam, K., Taylor, R. A. (2018), Cyclic performance of cascaded and multi-layered solid-PCM shell-and-tube thermal energy storage systems: A case study of the 19.9 MWe Gemasolar CSP plant, Applied Energy, 228, 240-253. https://doi.org/10.1016/j.apenergy.2018.06.084
  • [16] Nomura, T., Okinaka, N. and Akiyama, T. (2010). Technology of latent heat storage for high temperature application: A review, ISIJ International, 50 (9), 1229-1239. https://doi.org/10.2355/isijinternational.50.1229
  • [17] Michels, H. and Hahne, E. (1996). Cascaded latent heat storage for solar thermal power stations, Proceedings of 10th International Solar Forum, Freiburg, Germany, EuroSun, Germany.
  • [18] Robak, C. W., Bergman, T. L. and Faghri, A. (2011). Economic evaluation of latent heat thermal energy storage using embedded thermosyphons for concentrating solar power applications, Solar Energy, 85 (10), 2461-2473. https://doi.org/10.1016/j.solener.2011.07.006
  • [19] Liu, M., Saman, W. and Bruno, F. (2012). Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems, Renewable and Sustainable Energy Reviews, 16 (4), 2118-2132. https://doi.org/10.1016/j.rser.2012.01.020
  • [20] Liu, M., Tay, N.H. S., Bell S., Belusko, M., Jacob,R., Will, G., Saman, W., Bruno, F. (2016). Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies, Renewable and Sustainable Energy Reviews, 53 (4), 1411-1432. https://doi.org/10.1016/j.rser.2015.09.026
  • [21] Gasia, J., Miró, L., Cabeza L. F., (2016). Materials and system requirements of high temperature thermal energy storage systems: A review. Part 2: Thermal conductivity enhancement techniques, Renewable and Sustainable Energy Reviews, 60 (7), 1584–1601. https://doi.org/10.1016/j.rser.2016.03.019
  • [22] Laing, D., Bauer, T., Steinmann, W. D. and Lehmann, D. (2009), Advanced temperature latent heat storage system- Design and test results, The 11th International Conference on Thermal Energy Storage, 14-17 June, Stockholm, Sweden. https://elib.dlr.de/59383/
  • [23] Laing, D., Eck, M., Hempel, M., Johnson, M., Steinmann, W. D., Meyer-Grünefeldt, M. and Eickhoff, M. (2012a). High temperature PCM storage for DSG solar thermal power plants tested in various operating modes of water/steam flow, Proceedings of SolarPACES Conference, 11-14 September, Marrakech, Morrocco. https://elib.dlr.de/79679/
  • [24] Laing, D., Bauer, T., Breidenbach, N., Hachmann, B. and Johnson, M. (2013). Development of high temperature phase-change-material storages, Applied Energy, 109, 497-504. https://doi.org/10.1016/j.apenergy.2012.11.063
  • [25] Steinmann, W. D., Laing, D. and Tamme, R. (2009). Development of PCM storage for process heat and power generation, Journal of Solar Energy Engineering, Transactions of the ASME, 131 (4), 0410091-0410094. https://doi.org/10.1115/1.3197834
  • [26] Tao, Y. B., and He, Y., (2018). A review of phase change material and performance enhancement method for latent heat storage system, Renewable and Sustainable Energy Reviews, 93,245-259. https://doi.org/10.1016/j.rser.2018.05.028
  • [27] Dhaidan N. S., Khodadadi, J.,M. (2017). Improved performance of latent heat energy storage systems utilizing high thermal conductivity fins: a review. J Renew Sustain Energy 9 (3), 034103. https://doi.org/10.1063/1.4989738
  • [28] Laing, D., Steinmann, W. D., Tamme, R. and Richter, C. (2006). Solid media thermal storage for parabolic trough power plants, Solar Energy, 80 (10), 1283-1289. https://doi.org/10.1016/j.solener.2006.06.003
  • [29] Laing, D., Lehmann, D. and Bahl, C. (2008). Concrete Storage for Solar Thermal Power Plants and Industrial Process Heat, 3rd International Renewable Energy Storage Conference (IRES III), 24-25 November, Berlin. https://elib.dlr.de/57976/
  • [30] Laing, D., Lehmann, D., Fi, M. and Bahl, C. (2009). Test results of concrete thermal energy storage for parabolic trough power plants", Journal of Solar Energy Engineering, Transactions of the ASME, 131(4), 0410071-0410076. https://doi.org/10.1115/1.3197844
  • [31] Laing, D., Bahl, C., Bauer, T., Fiss, M., Breidenbach, N. and Hempel, M. (2012b). High-temperature solid-media thermal energy storage for solar thermal power plants, Proceedings of the IEEE, 100 (2), 516-524.
  • [32] Steinmann, W. D. and Zunft, S. (2002). TechThermo-A library for modelica applications in technical thermodymics", Otter, M. (ed.), in: 2nd International Modelica Conference, 18-19 March, Germany, The Modelica Association, pp. 217.
  • [33] Agyenim, F., Hewitt, N., Eames, P. and Smyth, M. (2010). A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)", Renewable and Sustainable Energy Reviews, 14 (2), 615-628. https://doi.org/10.1016/j.rser.2009.10.015
  • [34] Muhammad, M. D., Badr, O. and Yeung, H. (2014). Heat transfer in finned latent heat storage for parabolic trough solar power plants, Proceedings of IREC 2014 - 5th International Renewable Energy Congress, IEEE, Tunisia
  • [35] Muhammad, M. D. (2014). Development of a cascaded latent heat storage system for parabolic trough solar thermal power generation, PhD Thesis, Cranfield University, UK. URI: http://dspace.lib.cranfield.ac.uk/handle/1826/9303
  • [36] Muhammad, M. D., Badr, O. (2017). Performance of a Finned, Latent-Heat Storage System for High Temperature Applications" Applied Thermal Engineering, vol. 116, pp 799 - 810. https://doi.org/10.1016/j.applthermaleng.2017.02.006
  • [37] Dymola (2012). Dynamic Modelling Laboratory- User Manual, Dassaut Systemes, Sweden
  • [38] Solutia (2008), Therminol VP-1: Vapour Phase/Liquid Phase Heat Transfer Fluid, Technical Bulletin 7239115C, Solutia.
  • [39] Cao, Y. and Faghri, A. (1990). Numerical analysis of phase-change problems including natural convection, Journal of Heat Transfer, 112 (3), 812-816.
  • [40] Pacheco, J. E. and Gilbert, R. (1999). Overview of recent results of the Solar Two test and evaluation program", Proceedings of the 1999 ASME International Solar Energy Conference, 11-14 April, Maui, HI.
  • [41] Bahl, C., Laing, D., Hempel, M. and Stuckle, A. (2009). Concrete Thermal Energy Storage for Solar Thermal Power Plants and Industrial Process Heat, Proceedings of SolarPACES Symposium, 15-18 September, Berlin. Germany. https://elib.dlr.de/61290/
  • [42] Herrmann, U., Kelly, B. and Price, H. (2004). Two-tank molten salt storage for parabolic trough solar power plants", Energy, vol. 29, no. 5-6, pp. 883-893. https://doi.org/10.1016/S0360-5442(03)00193-2