DESIGN, IMPLEMENTATION AND ANALYSIS OF THE OVERALL PERFORMANCE OF A MICRO HYDRO TURGO TURBINE

The increasing demand for energy and the concerns regarding environmental protection have been driving forces toward the exploitation of renewable energy sources as a better alternative compared to conventional energy sources. Furthermore, renewable energy sources enable an independent energy supply for isolated locations or communities that lack access to the main electricity grid, and additionally, they offer the possibility to use available energy sources for beneficial individual purposes. Considering these statements, the use of micro hydropower plants represents a convenient and advantageous option to implement. A micro hydro Turgo turbine is used for analysis in this paper, due to its simple design, structure, easy production and low installation cost. In this manner, this paper deals with the use of Euler equations in detailed analysis in designing and implementation of a micro hydro Turgo turbine. The presented methodology will be based on numerical calculations of micro hydro Turgo turbine characteristic parameters in various operating regimes. The obtained results from numerical calculation will be compared to the current performance of the real existing Turgo turbine. Accordingly, based on obtained results, recommendations for improving the performance of micro hydro Turgo turbines will be presented.

___

  • [1] J. Raabe, Hydro power: the design, use, and function of hydromechanical, hydraulic, and electrical equipment. Düsseldorf: VDI-Verlag, 1985.
  • [2] “Big Progress for Small Hydro Permitting Reform,” Hydro Review, Apr. 01, 2013. https://www.hydroreview.com/2013/04/01/big-progress-for-small-hydro-permitting-reform/ (accessed May 23, 2020).
  • [3] A. K. Akella, M. P. Sharma, and R. P. Saini, “Optimum utilization of renewable energy sources in a remote area,” Renewable and Sustainable Energy Reviews, vol. 11, no. 5, pp. 894–908, Jun. 2007, doi: 10.1016/j.rser.2005.06.006.
  • [4] C. P. Jawahar and P. A. Michael, “A review on turbines for micro hydro power plant,” Renewable and Sustainable Energy Reviews, vol. 72, pp. 882–887, May 2017, doi: 10.1016/j.rser.2017.01.133.
  • [5] I. Yüksel, “Hydro Energy and Enviromental Policies in Turkey,” Journal of Thermal Engineering, Yildiz Technical University Press, Istanbul, Turkey, 2016, doi: 10.18186/jte.26671.
  • [6] S. Lajqi, N. Lajqi, and B. Hamidi, “Design and Construction of Mini Hydropower Plant with Propeller Turbine,” International Journal of Contemporary ENERGY, no. Vol.2. No.1, pp. 1–13, Feb. 2016, doi: 10.14621/ce.20160101.
  • [7] B. R. Cobb and K. V. Sharp, “Impulse (Turgo and Pelton) turbine performance characteristics and their impact on pico-hydro installations,” Renew. Energy, vol. 50, pp. 959–964, Feb. 2013, doi: 10.1016/j.renene.2012.08.010.
  • [8] B. Suyesh, V. Parag, D. Keshav, A. M. Ahmed, and O. Abdul-Ghani, “Novel trends in modelling techniques of Pelton Turbine bucket for increased renewable energy production,” Renewable and Sustainable Energy Reviews, vol. 112, pp. 87–101, Sep. 2019, doi: 10.1016/j.rser.2019.05.045.
  • [9] A. Zidonis, D. S. Benzon, and G. A. Aggidis, “Development of hydro impulse turbines and new opportunities,” Renew. Sust. Energ. Rev., vol. 51, pp. 1624–1635, Nov. 2015, doi: 10.1016/j.rser.2015.07.007.
  • [10] D. S. Benzon, G. A. Aggidis, and J. S. Anagnostopoulos, “Development of the Turgo Impulse turbine: Past and present,” Appl. Energy, vol. 166, pp. 1–18, Mar. 2016, doi: 10.1016/j.apenergy.2015.12.091.
  • [11] C. S. Kaunda, C. Z. Kimambo, and T. K. Nielsen, “A technical discussion on microhydropower technology and its turbines,” Renewable and Sustainable Energy Reviews, vol. 35, pp. 445–459, Jul. 2014, doi: 10.1016/j.rser.2014.04.035.
  • [12] S. J. Williamson, B. H. Stark, and J. D. Booker, “Performance of a low-head pico-hydro Turgo turbine,” Applied Energy, vol. 102, pp. 1114–1126, Feb. 2013, doi: 10.1016/j.apenergy.2012.06.029.
  • [13] K. Gaiser, P. Erickson, P. Stroeve, and J.-P. Delplanque, “An experimental investigation of design parameters for pico-hydro Turgo turbines using a response surface methodology,” Renew. Energy, vol. 85, pp. 406–418, Jan. 2016, doi: 10.1016/j.renene.2015.06.049.
  • [14] G. Ranjitkar, J. Huang, and T. Tung, “Application of Micro-Hydropower Technology for Remote Regions,” in 2006 IEEE EIC Climate Change Conference, May 2006, pp. 1–10, doi: 10.1109/EICCCC.2006.277207.
  • [15] Y. R. Pasalli and A. B. Rehiara, “Design Planning of Micro-hydro Power Plant in Hink River,” Procedia Environmental Sciences, vol. 20, pp. 55–63, 2014, doi: 10.1016/j.proenv.2014.03.009.
  • [16] K. Kusakana, “A survey of innovative technologies increasing the viability of micro-hydropower as a cost effective rural electrification option in South Africa,” Renew. Sust. Energ. Rev., vol. 37, pp. 370–379, Sep. 2014, doi: 10.1016/j.rser.2014.05.026.
  • [17] S. Nababan, E. Muljadi, and F. Blaabjerg, “An overview of power topologies for micro-hydro turbines,” in 2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Jun. 2012, pp. 737–744, doi: 10.1109/PEDG.2012.6254084.
  • [18] Budiarso, Warjito, M. N. Lubis, and D. Adanta, “Performance of a Low Cost Spoon-Based Turgo Turbine for Pico Hydro Installation,” in 5th International Conference on Power and Energy Systems Engineering (cpese 2018), vol. 156, H. Bevrani, Ed. Amsterdam: Elsevier Science Bv, 2019, pp. 447–451.
  • [19] Budiarso, D. Febriansyah, Warjito, and D. Adanta, “The effect of wheel and nozzle diameter ratio on the performance of a Turgo turbine with pico scale,” Energy Rep., vol. 6, pp. 601–605, Feb. 2020, doi: 10.1016/j.egyr.2019.11.125.
  • [20] S. J. Williamson, B. H. Stark, and J. D. Booker, “Experimental optimisation of a low-head pico hydro turgo turbine,” in 2012 IEEE Third International Conference on Sustainable Energy Technologies (ICSET), Sep. 2012, pp. 322–327, doi: 10.1109/ICSET.2012.6357419.
  • [21] J. L. Clarembaux Correa, J. De Andrade, R. Noguera, S. Croquer, F. Jeanty, and M. Asuaje, Design Procedure for a Turgo Type Turbine Using a Three-Dimensional Potential Flow. New York: Amer Soc Mechanical Engineers, 2012, pp. 2039–2052.
  • [22] O. B. Yaakob, Y. M. Ahmed, A. H. Elbatran, and H. M. Shabara, “A Review on Micro Hydro Gravitational Vortex Power and Turbine Systems,” J. Teknol., vol. 69, no. 7, 2014.
  • [23] P. K. Koukouvinis, J. S. Anagnostopoulos, and D. E. Papantonis, “SPH Method used for Flow Predictions at a Turgo Impulse Turbine: Comparison with Fluent,” vol. 5, no. 7, p. 8, 2011.
  • [24] J. S. Anagnostopoulos, P. K. Koukouvinis, F. G. Stamatelos, and D. E. Papantonis, Optimal Design and Experimental Validation of a Turgo Model Hydro Turbine. New York: Amer Soc Mechanical Engineers, 2012, pp. 157–166.
  • [25] Warjito, Budiarso, A. I. Siswantoro, D. Adanta, M. Kamal, and R. Dianofitra, “Simple Bucket Curvature for Designing a Low-Head Turgo Turbine for Pico Hydro Application,” Int. J. Technol., vol. 8, no. 7, pp. 1239–1247, Dec. 2017, doi: 10.14716/ijtech.v8i7.767.
  • [26] S. Khurana, V. Goel, and A. Kumar, “FEM Analysis of Turgo Impulse Turbine Blade,” Walailak Journal of Science and Technology (WJST), vol. 10, no. 4, pp. 363–368, Apr. 2013.
  • [27] S. Khurana, Varun, and A. Kumar, “Effect of silt particles on erosion of Turgo impulse turbine blades,” Int. J. Ambient Energy, vol. 35, no. 3, pp. 155–162, 2014, doi: 10.1080/01430750.2013.789985.
  • [28] S. Khurana and V. Goel, “Effect of jet diameter on erosion of turgo impulse turbine runner,” J. Mech. Sci. Technol., vol. 28, no. 11, pp. 4539–4546, Nov. 2014, doi: 10.1007/s12206-014-1021-6.
  • [29] S. Khurana, V. Goel, and G. Singh, Effect of Silt and Jet Diameter on Performance of Turgo Impulse Hydro Turbine. New York: Amer Soc Mechanical Engineers, 2017, p. UNSP V01AT03A030.
  • [30] “Creating the ultimate hybrid system by mixing solar energy and hydroelectricity - Renewable Energy Focus.” http://www.renewableenergyfocus.com/view/45793/creating-the-ultimate-hybrid-system-by-mixing-solar-energy-and-hydroelectricity/ (accessed May 24, 2020).
  • [31] R. Muhida, A. Mostavan, W. Sujatmiko, M. Park, and K. Matsuura, “The 10 years operation of a PV-micro-hydro hybrid system in Taratak, Indonesia,” Solar Energy Materials and Solar Cells, vol. 1–4, no. 67, pp. 621–627, 2001.
  • [32] E. M. Nfah and J. M. Ngundam, “Feasibility of pico-hydro and photovoltaic hybrid power systems for remote villages in Cameroon,” Renewable Energy, vol. 34, no. 6, pp. 1445–1450, Jun. 2009, doi: 10.1016/j.renene.2008.10.019.
  • [33] S. Lajqi, X. Fejzullahu, N. Lajqi, and H. Hajdini, “Analysis of the Mini Turgo Hydro Turbine Performance for different Working Regimes,” 2017.
  • [34] S. Lajqi, D. Meha, X. Berisha, B. Đurin, and L. Baić, “The infrastructure of Renewable Energy Sources for Sustainable Development in Kosovo,” 12th SDEWES Conference Dubrovnik 2017, p. 445, Oct. 2017.
  • [35] A. W. Dametew, “Design and Analysis of Small Hydro Power for Rural Electrification,” p. 23, 2016.
  • [36] A. Chauhan and R. P. Saini, “Renewable energy based off-grid rural electrification in Uttarakhand state of India: Technology options, modelling method, barriers and recommendations,” Renewable and Sustainable Energy Reviews, vol. 51, pp. 662–681, Nov. 2015, doi: 10.1016/j.rser.2015.06.043.
  • [37] A. H. Elbatran, O. B. Yaakob, Y. M. Ahmed, and H. M. Shabara, “Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review,” Renewable and Sustainable Energy Reviews, vol. 43, pp. 40–50, Mar. 2015, doi: 10.1016/j.rser.2014.11.045.
  • [38] “Turbína TURGO.” http://mve.energetika.cz/primotlaketurbiny/turgo.htm (accessed May 24, 2020).