THERMAL BEHAVIOUR KINETIC MODELING OF CAPSICUM ANNUUM WASTE BIOMASS USING AN ISO-CONVERSION METHOD

In the present study, the pyrolysis behaviour of Capsicum Annuum stem Waste (CAW) was studied applying thermogravimetric analysis to evaluate the intrinsic kinetic parameters to develop a pyrolysis reactor for utilizing CAW. The thermal decomposition of CAW was achieved between 373 – 1173 K under inert conditions at different heating rates of 10, 20, and 30 K min-1. Model-free kinetic methods like Kissinger-Akahira-Sunose (KAS), Ozawa Flynn Wall (OFW) and Coats Redfern methods were applied to work out the kinetic parameters. To identify the utility of CAW and its biochar, physio-chemical characteristics such as proximate and ultimate analysis, scanning electron microscopy, and Fourier Transform Infrared analysis are reported.

___

  • [1] Abbasi, Tasneem, and S. A. Abbasi. Biomass Energy and the Environmental Impacts Associated with Its Production and Utilization. Vol. 14, 2010, pp. 919–37, doi:10.1016/j.rser.2009.11.006.
  • [2] Bhavanam, Anjireddy, and R. C. C. Sastry. “Kinetic Study of Solid Waste Pyrolysis Using Distributed Activation Energy Model.” Bioresource Technology, vol. 178, Elsevier Ltd, Feb. 2015, pp. 126–31, doi:10.1016/j.biortech.2014.10.028.
  • [3] Ceylan, Selim, and Yıldıray Topçu. “Bioresource Technology Pyrolysis Kinetics of Hazelnut Husk Using Thermogravimetric Analysis.” BIORESOURCE TECHNOLOGY, vol. 156, Elsevier Ltd, 2014, pp. 182–88, doi:10.1016/j.biortech.2014.01.040.
  • [4] Collins, Stephen, and Praveen Ghodke. “Kinetic Parameter Evaluation of Groundnut Shell Pyrolysis through Use of Thermogravimetric Analysis.” Journal of Environmental Chemical Engineering, vol. 6, no. 4, Elsevier, 2018, pp. 4736–42, doi:10.1016/j.jece.2018.07.012.
  • [5] F.J.A. Antunes, and J. L. Figueiredo. Pyrolysis Kinetics of Lignocellulosic MaterialsÐthree Independent Reactions Model. Vol. 78, 1999.
  • [6] Ponnam V, Katari NK, Mandapati RN, Nannapaneni S, Tondepu S, Jonnalagadda SB. Efficacy of biochar in removal of organic pesticide, Bentazone from watershed systems. J Environ Sci Health B. 2020;55(4):396-405. doi: 10.1080/03601234.2019.1707008. Epub 2020 Jan 6. PMID: 31905102..
  • [7] Ghodke, Praveen, and Ramesh Naidu Mandapati. “Investigation of Particle Level Kinetic Modeling for Babul Wood Pyrolysis.” Fuel, vol. 236, no. July 2018, Elsevier, 2019, pp. 1008–17, doi:10.1016/j.fuel.2018.09.084.
  • [8] Ponnam, V., Reddy, R.A., Sumalatha, BSorption and Desorption Studies for the Removal of Bentazone using Biochar Amended Soil, Indian Journal of Ecology, 47(11), 128-131, 2020
  • [9] Harrison, L. G. “The Theory of Solid Phase Kinetics.” Comprehensive Chemical Kinetics, vol. 2, no. C, 1969, pp. 377–462, doi:10.1016/B978-0-444-40674-3.50011-0.
  • [10] Johnson, R. L., et al. Abundant and Stable Char Residues in Soils: Implications for Soil Fertility and Carbon Sequestration. 2012.
  • [11] Jong, W. De, et al. Pyrolysis of Miscanthus Giganteus and Wood Pellets : TG-FTIR Analysis and Reaction Kinetics Q. Vol. 82, 2003, pp. 1139–47, doi:10.1016/S0016-2361(02)00419-2.
  • [12] Kumar, Anup, et al. “Bioresource Technology Modelling of Pyrolysis of Large Wood Particles.” Bioresource Technology, vol. 100, no. 12, Elsevier Ltd, 2009, pp. 3134–39, doi:10.1016/j.biortech.2009.01.007.
  • [13] L.K.Velayutham, 1Dr., and 2Dr. K. Damodaran. Growth Rate of Chilli Production in Guntur District of Andhra Pradesh. Vol. 2, no. 11, 2015, pp. 1–5.
  • [14] Mishra, Ranjeet Kumar, and Kaustubha Mohanty. “Pyrolysis Kinetics and Thermal Behavior of Waste Sawdust Biomass Using Thermogravimetric Analysis Ranjeet Kumar Mishra , Kaustubha Mohanty.” Bioresource Technology, Elsevier Ltd, 2017, doi:10.1016/j.biortech.2017.12.029.
  • [15] Muktham, Radhakumari, et al. Study of Thermal Behavior of Deoiled Karanja Seed Cake Biomass : Thermogravimetric Analysis and Pyrolysis Kinetics. 2016, doi:10.1002/ese3.109.
  • [16] Parthasarathy, Prakash, and Sheeba K. Narayanan. Determination of Kinetic Parameters of Biomass Samples Using Thermogravimetric Analysis. Vol. 00, no. 00, 2013, doi:10.1002/ep.
  • [17] Pode, Ramchandra. “Potential Applications of Rice Husk Ash Waste from Rice Husk Biomass Power Plant.” Renewable and Sustainable Energy Reviews, vol. 53, Jan. 2016, pp. 1468–85, doi:10.1016/j.rser.2015.09.051.
  • [18] Ren, Liang, et al. Preparation and Evaluation of Cattail Fiber-Based Activated Carbon For. Vol. 168, 2011, pp. 553–61, doi:10.1016/j.cej.2011.01.021.
  • [19] Sarkar, Arunabha, and Ghodke Praveen. “Utilization of Waste Biomass into Useful Forms of Energy.” Springer Proceeding in Energy, 2017, pp. 117–32, doi:10.1007/978-3-319-47257-7_12.
  • [20] Shawalliah, Siti, et al. “Bioresource Technology Combustion Characteristics of Malaysian Oil Palm Biomass , Sub-Bituminous Coal and Their Respective Blends via Thermogravimetric Analysis ( TGA ).” Bioresource Technology, vol. 123, no. 2012, Elsevier Ltd, 2020, pp. 581–91, doi:10.1016/j.biortech.2012.07.065.
  • [21] Silva, Rita Barros, et al. “Pyrolysis and Char Characterization of Refuse-Derived Fuel Components.” Energy & Fuels, vol. 29, no. 3, American Chemical Society, Mar. 2015, pp. 1997–2005, doi:10.1021/ef502011f.
  • [22] Song, X. D., et al. Chemosphere Application of Biochar from Sewage Sludge to Plant Cultivation : Influence of Pyrolysis Temperature and Biochar-to-Soil Ratio on Yield and Heavy Metal Accumulation. 2014, doi:10.1016/j.chemosphere.2014.01.070.
  • [23] Tinwala, Farha, et al. “Intermediate Pyrolysis of Agro-Industrial Biomasses in Bench-Scale Pyrolyser: Product Yields and Its Characterization.” Bioresource Technology, vol. 188, Elsevier Ltd, 2015, pp. 258–64, doi:10.1016/j.biortech.2015.02.006.
  • [24] Vijetha Ponnam 1 , Subbaiah Tondepu 1 , Vineet Aniya 2 , Alka Kumari 2 , Satyavathi Bankupalli 2,*, Ramesh Naidu Mandapati 1. Torrefied and Unmodified Capsicum Annuam Biochar for the Removal of Synthetic Hazardous Pesticide (Carbofuran) from Watershed. Vol. 9, no. 5, 2019, pp. 4384–93.
  • [25] Vlaev, L. T., et al. Non-Isothermal Kinetics of Pyrolysis of Rice Husk. Vol. 406, no. January, 2003, pp. 1–7, doi:10.1016/S0040-6031(03)00222-3.
  • [26] Vyazovkin, Sergey, and Charles A. Wight. Model-Free and Model- ® Tting Approaches to Kinetic Analysis of Isothermal and Nonisothermal Data. Vol. 341, 1999, pp. 53–68.
  • [27] Wang, Xue-li, et al. “Study on the Solubilization Capacity of Bio-Oil in Diesel by Microemulsion Technology with Span80 as Surfactant.” Fuel Processing Technology, vol. 118, Feb. 2014, pp. 141–47, doi:10.1016/j.fuproc.2013.08.020.
  • [28] Yangali, Pablo, et al. “Co-Pyrolysis Reaction Rates and Activation Energies of West Virginia Coal and Cherry Pit Blends.” Journal of Analytical and Applied Pyrolysis, vol. 108, July 2014, pp. 203–11, doi:10.1016/j.jaap.2014.04.015.