THREE-DIMENSIONAL SIMULATION OF A TURBULENT FLOW AROUND A TAPERED CUBE DUG IN THE MIDDLE

To analyze the influence of the tapered form of the two upper vertices of a rectangular cube placed in a channel and the impact of the insertion of hollow in the center of the obstacle, a three-dimensional study was executed using K-ω SST turbulence model. Different models of the form of the cube were presented to examine the features of the flow with a Reynolds number Re=4×104. The turbulence kinetic energy, 2D and 3D time-averaged streamlines, trace-lines, streamwise velocity profiles, pressure profiles were obtained using the ANSYS CFX calculation code and the finite volume method were employed for resolving the governing equations. The streamlines showed in the model of the tapered cube with hollow a formation of another vortex downstream of the cube at the outlet of the hollow. For the streamwise velocity, there are two recirculation zones: one logarithmic zone due to the main flow, the other is a lower parabolic return zone due to the recirculation vortex.

___

  • [1] G. Bitsuamlak, T.Stathopoulos, C.Bedard. Effects of upstream two-dimensional hills on design wind loads: a computational approach. Wind and Structures 2006; 9(1):37-58. http://dx.doi.org/10.12989/was.2006.9.1.037
  • [2] Nemdili Saleha, Nemdili Fadèla, Azzi Abbès. Improving cooling effectiveness by the use of chamfers on the top of electronic components. Microelectronics Reliability 2015;55(7):1067-1076. https://doi.org/10.1016/j.microrel.2015.04.006
  • [3] Matthew Hainesa, Ian Taylor. Numerical investigation of the flow field around low rise buildings due to a downburst event using large eddy simulation. Journal of Wind Engineering & Industrial Aerodynamics 2018;172:12-30. https://doi.org/10.1016/j.jweia.2017.10.028
  • [4] H.J. Hussein, R.J. Martinuzzi. Energy balance for the turbulent flow around a surface-mounted cube placed in a channel. Phys. Fluids 1996;8764-780. https://doi.org/10.1063/1.868860
  • [5] R. Martinuzzi, C. Tropea. The flow around a surface-mounted prismatic obstacle placed in a fully developed channel flow, J.Fluids Eng. 1993;115:85-92. https://doi.org/10.1115/1.2910118
  • [6] JongYeon Hwang, KyungSoo Yang. Numerical study of vertical structures around a wall‐mounted cubic obstacle in channel flow. Physics of Fluids 2010;16(7):2382-2394. https://doi.org/10.1063/1.1736675
  • [7] German Filippini, Gerado Franck, Norberto Nigro. Large Eddy Simulations of the flow around a square cylinder. Mecanica Computacional 2005;24:1279-1298. https://doi.org/10.1016/j.jfluidstructs.2020.103107
  • [8] Hee Chang Lim, T.G. Thomas, Ian P. Castro. Flow around a cube in a turbulent boundary layer: LES and experiment. Journal of Wind Engineering and Industrial Aerodynamics 2009;97(2):96–109. https://doi.org/10.1016/j.jweia.2009.01.001
  • [9] S. Krajnovi'c, L. Davidson. Large-eddy simulation of the flow around a bluff body. AIAA Journal 2002;40(5):927-936. https://doi.org/10.2514/2.1729
  • [10] Dan Gu, Hee Chang Lim. Wind flow around rectangular obstacles and the effects of aspect ratio. The Seventh International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7) 2012;2-6.
  • [11] Becker, H. Lienhart, F. Durst. Flow around three-dimensional obstacles in boundary layers, J. Wind Eng. Ind. Aerodyn. 2002;90:265-279.
  • [12] Alexander Yakhot, Heping Liu, Nikolay Nikitin. Turbulent flow around a wall-mounted cube: A direct numerical simulation. International Journal of Heat and Fluid Flow 2006;27(6):994-1009. https://doi.org/10.1016/j.ijheatfluidflow.2006.02.026
  • [13] B.Rostane, K.Aliane. Three Dimensional Simulation for Turbulent Flow Around Prismatic Obstacle with Rounded Downstream Edge Using the k-ω SST Model. International Review of Mechanical Engineering (I.RE.M.E.) 2015;9(3):1970-8734.
  • [14] SARI-HASSOUN Zakaria, ALIANE Khaled. Simulation numérique de l’écoulement turbulent autour d’obstacles a arête amont courbée. International Journal of Scientific Research & Engineering Technology (IJSET) 2016;196-201.
  • [15] Aliane, K. Passive control of the turbulent flow over a surface-mounted rectangular block obstacle and a rounded rectangular obstacle. International Review of Mechanical Engineering (IREME) 2011;5(2);305-314.
  • [16] Mohd ARIFF, Salim M. SALIM, and Siew Cheong CHEAH, « Wall y+ approach for dealing with turbulent flow over a surface-mounted cube: part 2 – high Reynolds number », Seventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 9-11 December 2009.
  • [17] Karima HEGUEHOUG ep BENKARA-MOSTEFA, Zoubir NEMOUCHI, Farid GACI, «Contribution à l’étude de l’écoulement Tridimensionnel turbulent autour d’un profil et à travers une série d’aubes fixes», TERMOTEHNICA 1/2010.
  • [18] Merahi, M. Abidat, A. Azzi, O. Hireche. Numerical assessment of incidence losses in an annular blade cascade. Séminaire international de Génie Mécanique. Sigma’02 ENSET. Oran. 28 & 29 April 2002.
  • [19] Mohammed Amine Amraoui, Khaled Aliane, ‘’Three-dimensional Analysis of Air Flow in a Flat Plate Solar Collector”, Periodica Polytechnica Mechanical Engineering 62(2), pp. 126-135, 2018. https://doi.org/10.3311/PPme.11255
  • [20] Sercan Dogan, Sercan Yagmur, Ilker Goktepeli, and Muammer Ozgoren. Assessment of Turbulence Models for Flow around a Surface-Mounted Cube. International Journal of Mechanical Engineering and Robotics Research 2017;6(3). doi: 10.18178/ijmerr.6.3.237-241
  • [21] Kanfoudi, H., G. Bellakhall, M. Ennouri, A. Bel Hadj Taher and R. Zgolli. Numerical Analysis of the Turbulent Flow Structure Induced by the Cavitation Shedding Using LES. Journal of Applied Fluid Mechanics. 2017;10(3):933–46. DOI: 10.18869/acadpub.jafm.73.240.27384
  • [22] Seyed Reza Djeddi, Ali Masoudi, Parviz Ghadimi. Numerical Simulation of Flow around Diamond-Shaped Obstacles at Low to Moderate Reynolds Numbers. American Journal of Applied Mathematics and Statistics 2013;1(1):11-20. DOI:10.12691/ajams-1-1-3
  • [23] Liakos, A. and Malamataris, N.A. Direct numerical simulation of steady-state, three dimensional, laminar flow around a wall-mounted cube, Physics of Fluids 2014;26(5):053603. https://doi.org/10.1063/1.4876176
  • [24] Diaz-Daniel, C., Laizet, S., & Vassilicos, J. (2017). Direct Numerical Simulations of a wall-attached cube immersed in laminar and turbulent boundary layers. Preprint submitted to the International Journal of Heat and Fluid Flow 2017;68:269-280. https://doi.org/10.1016/j.ijheatfluidflow.2017.09.015
  • [25] Sumner, D., Rostamy, N., Bergstrom, D., & Bugg, J. Influence of aspect ratio on the flow above the free end of a surface-mounted finite cylinder. International Journal of Heat and Fluid Flow 2015;56:290-304. https://doi.org/10.1016/j.ijheatfluidflow.2015.08.005
  • [26] Sumner, D., Rostamy, N., Bergstrom, D., & Bugg, J. D. Influence of aspect ratio on the mean flow field of a surface-mounted finite-height square prism. International Journal of Heat and Fluid Flow 2017;65:1-20. https://doi.org/10.1016/j.ijheatfluidflow.2017.02.004
  • [27] Siddhesh Shinde, Eric Johnseny and Kevin Makiz, (2017). Understanding the effect of cube size on the near wake characteristics in a turbulent boundary layer. 47th AIAA Fluid Dynamics Conference, Denver, Colorado 2017;3640. https://doi.org/10.2514/6.2017-3640
  • [28] M. Ennouri, H. Kanfoudi, A. Bel Hadj Taher and R. Zgolli, (2019). Numerical Flow Simulation and Cavitation Prediction in a Centrifugal Pump using an SST-SAS Turbulence Model. Journal of Applied Fluid Mechanics 2019;12(1):25-39. DOI: 10.29252/jafm.75.253.28771
  • [29] Sari Hassoun Zakaria, Aliane Khaled, Henaoui Mustapha. Experimental Study of a Flat Plate Solar Collector Equipped with Concentrators. International Journal of Renewable Energy Research (IJRER), 2017;7(3):1028-1031.
  • [30] M. Bayareh and A. Nourbakhsh. Numerical simulation and analysis of heat transfer for different geometries of corrugated tubes in a double pipe heat exchanger. Journal of Thermal Engineering 2019;5(4):293-301. https://doi.org/10.18186/thermal.581775
  • [31] F. Menter. Two-Equation Eddy-Viscosity. Turbulence Models for engineering Application. AIAA Journal, 1994;32:1598–1605. https://doi.org/10.2514/3.12149
  • [32] D. C. Wilcox. Turbulence Modeling for CFD Second Edition, D.C.W. Industries, (1998).
  • [33] W. Jones and B. Launder. The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. International Journal of Heat and Mass Transfer 1973;16(6):1119-1130. https://doi.org/10.1016/0017-9310(73)90125-7