Differences in Heavy Metals Adsorption on Natural, Modified, and Synthetic Zeolites-A Review

Differences in Heavy Metals Adsorption on Natural, Modified, and Synthetic Zeolites-A Review

This paper presents a comprehensive study of the differences in heavy metal adsorption on natural, modified, and synthetic zeolites. Heavy metal treatment and adsorption are critical issues in today's modern world, and despite advancements in technology, they remain a global challenge. Industrial effluents are a major source of heavy metal pollutants, which have a severe impact on human health and the environment. Therefore, removing heavy metals from contaminated water and wastewater is a necessity. Adsorption is the most commonly used method for removing heavy metals from the environment due to its cost-effectiveness, design, and performance. Among various adsorbents, zeolites are currently considered a suitable method due to their cost-effectiveness, simplicity, and the varying ion-exchange capacity of natural zeolites worldwide for cations such as ammonium and heavy metal ions. The findings of this research could provide useful information for developing efficient and cost-effective methods for the removal of heavy metals from water and wastewater, thus addressing a critical global issue. The outcomes of this research contribute to promoting a green and healthy environment.


  • 1. Türksoy. R., T. G., Yalçın., E. İ., Türksoy. Ö., Demir. G.Y.,. Removal of heavy metals from textile industry wastewater. Frontiers in Life Sciences and Related Technologies. 2021, 2 (2), 44-50. Available from: .
  • 2. Motsa, M. M.; Thwala, J. M.; Msagati, T. A. M.; Mamba, B. B. The potential of melt-mixed polypropylene–zeolite blends in the removal of heavy metals from aqueous media. Physics and Chemistry of the Earth, Parts A/B/C. 2011, 36 (14), 1178-1188. Available from: .
  • 3. El-Azim, H.; Mourad, F. Removal of Heavy Metals Cd (II), Fe (III) and Ni (II), from Aqueous Solutions by Natural (Clinoptilolite) Zeolites and Application to Industrial Wastewater. Asian Journal of Environment & Ecology 2018, 7, 1-13. Available from: .
  • 4. Aghazadeh, S.; Safarzadeh, E.; Gharabaghi, M.; Irannajad, M. Modification of natural zeolite for Cu removal from waste waters. Desalination and Water Treatment 2016, 57, 1-8. Available from: .
  • 5. World Health, O. Lead in drinking-water: background document for development of WHO guidelines for drinking-water quality; WHO/SDE/WSH/03.04/09; World Health Organization., Geneva, 2003. Available from: .
  • 6. Krauklis, A.; Ozola, R.; Burlakovs, J.; Rugele, K.; Kirillov, K.; Trubaca-Boginska, A.; Rubenis, K.; Stepanova, V.; Klavins, M. FeOOH and Mn8O10Cl3 modified zeolites for As(V) removal in aqueous medium. Journal of Chemical Technology & Biotechnology. 2017, 92 (8), 1948-1960. Available from: .
  • 7. Kong, F.; Zhang, Y.; Wang, H.; Tang, J.; Li, Y.; Wang, S. Removal of Cr(VI) from wastewater by artificial zeolite spheres loaded with nano Fe–Al bimetallic oxide in constructed wetland. Chemosphere. 2020, 257, 127224. Available from: .
  • 8. Türkmen, M. Removal of Heavy Metals From Wastewaters by Use of Natural Zeolites. In Fresenius Environmental Bulletin. , 2002; Department of Environmental Engineering, Dokuz Eylül University.: Vol. 13, pp 574-580.
  • 9. Dursun, S.; Pala, A. I. Lead pollution removal from water using a natural zeolite. Journal of International Environmental Application and Science. 2007, 2, 11-19.
  • 10. Yuna, Z. Review of the Natural, Modified, and Synthetic Zeolites for Heavy Metals Removal from Wastewater. Environmental Engineering Science. 2016, 33 (7), 443-454. Available from: .
  • 11. Li, Y.; Bai, P.; Yan, Y.; Yan, W.; Shi, W.; Xu, R. Removal of Zn2+, Pb2+, Cd2+, and Cu2+ from aqueous solution by synthetic clinoptilolite. Microporous and Mesoporous Materials. 2019, 273, 203-211. Available from: .
  • 12. Bessa, R. A.; França, A. M. M.; Pereira, A. L. S.; Alexandre, N. P.; Pérez-Page, M.; Holmes, S. M.; Nascimento, R. F.; Rosa, M. F.; Anderson, M. W.; Loiola, A. R. Hierarchical zeolite based on multiporous zeolite A and bacterial cellulose: An efficient adsorbent of Pb2+. Microporous and Mesoporous Materials. 2021, 312, 110752. Available from: .
  • 13. Mirjana Golomeova, A. Z., Krsto Blazev, Boris Krstev, Blagoj Golomeov. Removal of Heavy Metals from Aqueous Solution using Clinoptilolite and Stilbite. INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & TECHNOLOGY (IJERT) . 2014, 03 (11), 1029-1035. Available from: .
  • 14. Habeebullah, T.; Munir, S.; Awad, A.; Morsy, E.; Seroji, A.; Mohammed, A. The Interaction between Air Quality and Meteorological Factors in an Arid Environment of Makkah, Saudi Arabia. International Journal of Environmental Science and Development. 2014, 6, 576-580. Available from: .
  • 15. Taamneh, Y.; Sharadqah, S. The removal of heavy metals from aqueous solution using natural Jordanian zeolite. Applied Water Science. 2017, 7 (4), 2021-2028. Available from: .
  • 16. TEKİN, B. a. A., ÜNSAL. Intake of divalent copper and nickel onto natural zeolite from aqueous solutions: a study in mono- and dicomponent systems. Turkish Journal of Chemistry. 2022, 46 (4), 1042-1054. Available from:.
  • 17. Zhang, Y.; Alessi, D. S.; Chen, N.; Luo, M.; Hao, W.; Alam, M. S.; Flynn, S. L.; Kenney, J. P. L.; Konhauser, K. O.; Ok, Y. S.; et al. Lead (Pb) sorption to hydrophobic and hydrophilic zeolites in the presence and absence of MTBE. Journal of Hazardous Materials. 2021, 420, 126528. Available from: .
  • 18. Apreutesei, R.; Catrinescu, C.; Teodosiu, C. Surfactant-Modified Natural Zeolites for Environmental Applications in Water Purification. Environmental engineering and management journal. 2008, 7, 149-161. Available from: .
  • 19. Bandura, L.; Panek, R.; Madej, J.; Franus, W. Synthesis of zeolite-carbon composites using high-carbon fly ash and their adsorption abilities towards petroleum substances. Fuel. 2021, 283, 119173. Available from: .
  • 20. Zorbay, F.; Arslan, S. Zeolitler ve Kullanım Alanları. Karaelmas Science and Engineering Journal. 2012, 2, 63-68. Available from: .
  • 21. Li, Y.; Liang, G.; Chang, L.; Zi, C.; Zhang, Y.; Peng, Z.; Zhao, W. Conversion of biomass ash to different types of zeolites: a review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2019, 43, 1-14. DOI: 10.1080/15567036.2019.1640316. Polatoglu, I. Chemical behaviour of clinoptilolite rich natural zeolite in aqueous medium. the Graduate School of Engineering and Sciences of izmir Institute of Technology., Izmir, 2005. Available from: .
  • 22. Zeng, S.; Wang, R.; Zhang, Z.; Qiu, S. Solventless green synthesis of sodalite zeolite using diatomite as silica source by a microwave heating technique. Inorganic Chemistry Communications. 2016, 70, 168-171. Available from: .
  • 23. Wu, Q.; Meng, X.; Gao, X.; Xiao, F.-S. Solvent-Free Synthesis of Zeolites: Mechanism and Utility. Accounts of chemical research. 2018, 51 (6), 1396-1403. Available from: . 24. Ghasemi, Z.; Sourinejad, I.; Kazemian, H.; Rohani, S. Application of zeolites in aquaculture industry: a review. Reviews in Aquaculture. 2018, 10 (1), 75-95. Available from: .
  • 25. Davis, M. E. Zeolites from a Materials Chemistry Perspective. Chemistry of Materials 2014, 26 (1), 239-245. Available from: .
  • 26. Tao, Y.; Kanoh, H.; Abrams, L.; Kaneko, K. Mesopore-Modified Zeolites:  Preparation, Characterization, and Applications. Chemical Reviews. 2006, 106 (3), 896-910. Available from: .
  • 27. Ramos-Guivar, J. A.; Taipe, K.; Schettino, M. A., Jr.; Silva, E.; Morales Torres, M. A.; Passamani, E. C.; Litterst, F. J. Improved Removal Capacity and Equilibrium Time of Maghemite Nanoparticles Growth in Zeolite Type 5A for Pb(II) Adsorption. Nanomaterials (Basel). 2020, 10 (9). DOI: 10.3390/nano10091668 From NLM. Ülkü, S. CHEMICAL BEHAVIOUR OF CLINOPTILOLITE RICH NATURAL ZEOLITE IN AQUEOUS MEDIUM. In Izmir Institute of Technology administrators., 2005.
  • 28. Krol, M. M. Natural vs. Synthetic Zeolites. 2020.
  • 29. Wang, S.; Peng, Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal. 2010, 156 (1), 11-24. Available from: .
  • 30. Passaglia, E.; Sheppard, R. A. The Crystal Chemistry of Zeolites. Reviews in Mineralogy and Geochemistry. 2001, 45 (1), 69-116. Available from: . (acccessed 6/14/2023).
  • 31. Batur, J.; Duan, Z.; Jiang, M.; Li, R.; Xie, Y.; Yu, X.-F.; Li, J.-R. Molecular Modification of Zeolites with Cold Atmospheric-Pressure Plasma Jet: A Green and Facile Strategy. Chemistry of Materials. 2023, 35 (10), 3867-3879. Available from: .
  • 32. Nguyen, M. L., Tanner, C. C. Ammonium Removal From Wastewaters Using Natural New Zealand Zeolites. New Zealand Journal of Agricultural Research. 1998, 3 ((41)), 427-446. Available from: .
  • 33. Zhang, Y. Characteristics and Mechanisms of Heavy Metal and MTBE Adsorption on Zeolites and Applications in Permeable Reactive Barriers. University of Cambridge, Robinson College 2019.
  • 34. Ozekmekci, M.; Salkic, G.; Fellah, M. F. Use of zeolites for the removal of H2S: A mini-review. Fuel Processing Technology. 2015, 139, 49-60. Available from: .
  • 35. Montes Luna, A. d. J.; Castruita de León, G.; García Rodríguez, S. P.; Fuentes López, N. C.; Pérez Camacho, O.; Perera Mercado, Y. A. Na+/Ca2+ aqueous ion exchange in natural clinoptilolite zeolite for polymer-zeolite composite membranes production and their CH4/CO2/N2 separation performance. Journal of Natural Gas Science and Engineering. 2018, 54, 47-53. Available from: .
  • 36. Abdullah, N. H.; Shameli, K.; Abdullah, E. C.; Abdullah, L. C. Solid matrices for fabrication of magnetic iron oxide nanocomposites: Synthesis, properties, and application for the adsorption of heavy metal ions and dyes. Composites Part B: Engineering 2019, 162, 538-568. Available from: .
  • 37. Mastinu, A.; Kumar, A.; Maccarinelli, G.; Bonini, S. A.; Premoli, M.; Aria, F.; Gianoncelli, A.; Memo, M. Zeolite Clinoptilolite: Therapeutic Virtues of an Ancient Mineral. Molecules. 2019, 24 (8). Available from: . From NLM.
  • 38. Kraljević Pavelić, S.; Simović Medica, J.; Gumbarević, D.; Filošević, A.; Pržulj, N.; Pavelić, K. Critical Review on Zeolite Clinoptilolite Safety and Medical Applications in vivo. Front Pharmacol. 2018, 9, 1350. Available from: . From NLM.
  • 39. Cincotti, A.; Mameli, A.; Locci, A. M.; Orrú, R.; Cao, G. Heavy Metals Uptake by Sardinian Natural Zeolites: Experiment and Modeling. Industrial & Engineering Chemistry Research. 2006, 45, 1074-1084.
  • 40. Gedik, K.; Imamoglu, I. Affinity of Clinoptilolite‐based Zeolites towards Removal of Cd from Aqueous Solutions. Separation Science and Technology - SEPAR SCI TECHNOL 2008, 43, 1191-1207. Available from: .
  • 41. Llanes-Monter, M.; Olguín, M.; Solache, M. Lead sorption by a Mexican, clinoptilolite-rich tuff. Environmental science and pollution research international. 2007, 14, 397-403. Available from: .
  • 42. Sprynskyy, M.; Buszewski, B.; Terzyk, A. P.; Namieśnik, J. Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. Journal of Colloid and Interface Science. 2006, 304 (1), 21-28. Available from: .
  • 43. MUDABER, S. N. B., BATUR. Jenaidullah., . Zeolites as effective adsorbents for heavy metal removal in wastewater treatment of Kabul city-A review. IAR Journal of Engineering and Technology. 2023, 4 (2), 20-31. Available from: .
  • 44. Yurekli, Y. Removal of heavy metals in wastewater by using zeolite nano-particles impregnated polysulfone membranes. Journal of Hazardous Materials. 2016, 309, 53-64. DOI: https://doi.org/10.1016/j.jhazmat.2016.01.064.
  • 45. Dhaouadi, F.; Sellaoui, L.; Reynel-Ávila, H. E.; Landín-Sandoval, V.; Mendoza-Castillo, D. I.; Jaime-Leal, J. E.; Lima, E. C.; Bonilla-Petriciolet, A.; Lamine, A. B. Adsorption mechanism of Zn2+, Ni2+, Cd2+, and Cu2+ ions by carbon-based adsorbents: interpretation of the adsorption isotherms via physical modelling. Environmental Science and Pollution Research. 2021, 28 (24), 30943-30954. Available from: .
  • 46. Wingenfelder, U.; Hansen, C.; Furrer, G.; Schulin, R. Removal of Heavy Metals from Mine Waters by Natural Zeolites. Environmental Science & Technology. 2005, 39 (12), 4606-4613. Available from: .
  • 47. Chen, Y.; Liu, Q.; Xu, M.; Wang, Z. Inter-annual variability of heavy metals pollution in surface sediments of Jiangsu coastal region, China: Case study of the Dafeng Port. Marine Pollution Bulletin. 2020, 150, 110720. Available from: .
  • 48. Kocaoba, S.; Orhan, Y.; Akyüz, T. Kinetics and equilibrium studies of heavy metal ions removalby use of natural zeolite. Desalination. 2007, 214 (1), 1-10. Available from: .
  • 49. Javanbakht, V.; Ghoreishi, S. M.; Habibi, N.; Javanbakht, M. A novel magnetic chitosan/clinoptilolite/magnetite nanocomposite for highly efficient removal of Pb(II) ions from aqueous solution. Powder Technology. 2016, 302, 372-383. Available from: .
  • 50. Qiao, D.; Wang, G.; Li, X.; Wang, S.; Zhao, Y. Pollution, sources and environmental risk assessment of heavy metals in the surface AMD water, sediments and surface soils around unexploited Rona Cu deposit, Tibet, China. Chemosphere. 2020, 248, 125988. Available from: .
  • 51. Nour, H. E.; El-Sorogy, A. S.; Abd El-Wahab, M.; Nouh, E. S.; Mohamaden, M.; Al-Kahtany, K. Contamination and ecological risk assessment of heavy metals pollution from the Shalateen coastal sediments, Red Sea, Egypt. Marine Pollution Bulletin. 2019, 144, 167-172. Available from: .
  • 52. Lu, F.; Astruc, D. Nanomaterials for removal of toxic elements from water. Coordination Chemistry Reviews. 2018, 356, 147-164. Available from: .
  • 53. Shirani, M.; Afzali, K.; Jahan, S.; Strezov, V.; Soleimani-Sardo, M. Pollution and contamination assessment of heavy metals in the sediments of Jazmurian playa in southeast Iran. Scientific Reports. 2020, 10. Available from: .
  • 54. Yıldırım, A.; Mudaber, S.; Öztürk, S. Improved Sustainable Ionic Liquid Catalyzed Production of Symmetrical and Non-Symmetrical Biological Wax Monoesters. European Journal of Lipid Science and Technology. 2019, 121 (2), 1800303. Available from: .
  • 55. Mudaber, S. Biyolojik vaks mono esterlerin etkin ve yeşil sentezi. Yayınlanmamış yüksek lisans tezi. Bursa Uludağ Üniversitesi, Bursa Turkiye, 2018.
  • 56. Li, R.; Batur, J.; Bian, H.; Wang, Y.-J.; Duan, Z.; Xie, Y.; Li, J.-R. Green and Facile Fabrication of Metal Oxide/Red Phosphorus Composite Catalysts for CO2 Photoreduction. ACS Sustainable Chemistry & Engineering 2022, 10 (26), 8658-8668. Available from: .
  • 57. Hamed, M.; Hussein, S.; Salama, A.; Mamoon, A. Use the natural zeolite (clinoptiolite ) in removal of ammonia and heavy metals and improving water quality in fish ponds. Al-Azhar Journal of Agricultural Research 2022, 47, 79-88. Available from: .
  • 58. Zorpas, A. A.; Pedreño, J. N.; Candel, M. B. A. Heavy metal treatment and removal using natural zeolites from sewage sludge, compost, and agricultural soils: a review. Arabian Journal of Geosciences. 2021, 14 (12), 1098. Available from:


Vancouver Mudaber S. , Batur J. Differences in Heavy Metals Adsorption on Natural, Modified, and Synthetic Zeolites-A Review. Journal of the Turkish Chemical Society Section A: Chemistry. 2023; 10(3): 847-860.
Journal of the Turkish Chemical Society Section A: Chemistry
  • Yayın Aralığı: Yılda Yılda 4 Sayı
  • Yayıncı: Türkiye Kimya Derneği


Sayıdaki Diğer Makaleler

Assessment of Total Phenolic Compounds, Antioxidant Capacity, β-Carotene Bioaccessibility, HMF Formation, and Color Degradation Kinetics in Pumpkin Pestils


Conductometric, Spectrophotometric and Computational Investigation of Binary and Ternary Complexes of Co(II) and Cu(II) Bivalent Metal Ions with L-Valine Amino Acid and Paracetamol Drug

Aisha ALABBSİ, Mohamed ZİDAN, Nouria SHNİN, Bakr ALDOORİ

Electrochemical Study of 17β-Estradiol and its Determination in Pharmaceutical Preparations using Square Wave Voltammetry


Preparation and Characterization of Polyaspartic and a High Solids Acrylic Copolymer Polyol Based Polyurethanes


Differences in Heavy Metals Adsorption on Natural, Modified, and Synthetic Zeolites-A Review

Sebghatullah MUDABER, Jenaidullah BATUR

Synthesis of New Azo Compounds and Their Application for a Simple Spectrophotometric Determination of Methyldopa Drug Using Anthranilic Acid and 2-Aminopyrimidine as Reagents


Synthesis, Antiproliferative Activity and In Silico Studies of Chalcones Derived From 4-(Imidazole-1-yl)Acetophenone

Bedriye Seda KURŞUN AKTAR, Abdulraheem Mustafa ALKARABASH, Ayşe ŞAHİN YAĞLIOĞLU, Emine Elçin ORUÇ-EMRE

Removal Of Sumifix Yellow EXF Reactive Azo Dye By Electro-Fenton Method


Development of Two Simple Spectrophotometric Methods to Assay Phenylephrine-HCl as Pure Form And in Its Drug Forms

Hanan HAMEED, Salim ALİ

Design, Synthesis and Structural Characterization of Novel Thioanthraquinone Analogues from 1,5-Dichloroanthraquinone