YEMEKLİK YAĞLARDA ÇİNKO TAYİNİ İÇİN YENİ BİR ANALİTİK YÖNTEM

Eser metaller, yağlarda oksidasyon reaksiyonlarında katalizör olduklarından yağın kalitesinin bozulmasına neden olurlar. Bu nedenle, yağlarda çeşitli metallerin tayinleri önemlidir. Çalışmamızda, yenilebilen sıvı yağlarda, örnek bozundurulmaksızın Zn(II) tayini için yeni bir yöntem geliştirilmiştir. Bu amaçla, grubumuzca [N,N’-bis(4 metoksisalisiliden)-1,2-diaminoetan] (MSE) Schiff bazı sentezlenmiş ve yapısı aydınlatılmıştır. Yağ fazında bulunan Zn(II)’nin sulu faza ekstraksiyonu, MSE-Zn(II) kompleksleşmesi yoluyla sağlanmıştır. Kompleks oluşumu için en uygun pH 4 ve kompleksleşme reaksiyonun dengeye gelme süresi de 20 dakika olarak belirlenmiştir. Maksimum ekstraksiyon veriminin elde edilebilmesi için, deneysel koşulların optimum değerleri merkezi kompozit dizayn (MKD) yöntemi kullanılarak tespit edilmiştir. Geliştirilen bu yeni yöntemde, Schiff baz/ zeytin yağ oranı (v/w) karıştırma oranı, karıştırma süresi ve sıcaklık parametrelerinin optimum değerleri sırasıyla 1,1 mL/g; 23 dakika ve 26 oC olarak belirlenmiştir. Çalışmamız, yağların çözünürleştirilmesini gerektirmeyen, hızlı, ucuz, kesinliği ve doğruluğu yüksek yeni bir yöntem olarak, yenilebilen sıvı yağlarda Zn(II) tayini için önerilmektedir. 

A NOVEL ANALYTICAL METHOD FOR DETERMINATION OF ZINC IN EDIBLE OILS

Trace metals can cause deterioration of the quality of the oil because of their catalyzing effect on oxidation reactions. So, the determinations of various elements in oils are important. In our study, a novel method for the determination of Zn(II) in liquid edible oils without digestion was developed. For this purpose, N,N’-bis(4 methoxysalicylidene)-1,2 diamino ethane (MSE) Schiff base was synthesized and the structure was clarified by our group. The extraction of Zn(II) from oil to aqueous phase was performed by the complexation reaction between Zn(II) and MSE. It was observed that the convenient pH for complexation is pH 4 and the equilibrium time is 20 minutes. Optimum experimental conditions were determined using by central composite desing method to achieve maximum extraction efficiency. The optimum conditions  for this new method were found as the ratios of the volume of Schiff base solution to the mass of oil 1,1 mL/g; the stirring time 23 minutes and temperature 26 oC. Our study was suggested as a new method which is no need to digestion, fast, cheap, accurate and precise method to the determination of Zn(II) in edible oils.

___

  • [1] G. L. Eichhorn, J. C. Bailar Jr., “Metal Ion Catalysis in the Hydrolysis of Schiff Bases”, J. Am. Chem. Soc., 75, 2905-2907 (1953).
  • [2] M. Bala, A.I.P. Sinha, “Coordination Behaviour of Some New Schiff Bases Towards Co(II), Ni(II) and Cu(II)”, Asian Journal of Chemistry, 1, 392-400 (1989).
  • [3] M.Dolaz, V. McKee, A. Gölcü and M. Tümer, “Synthesis, structural characterization, thermal and electrochemical studies of the N,N’-bis[(3,4-dichlorophenyl)methylidene]cyclohexane-1,4-diamine and its Cu(II), Co(II) and Ni(II) metal complexes”, Spectrochimica Acta Part A, 71, 1648–1654 (2009).
  • [4] E. İspir, “The synthesis, characterization, electrochemical character, catalytic and antimicrobial activity of novel, azo-containing Schiff Bases and their metal complexes”, Dyes and Pigments, 82, 13-19 (2009).
  • [5] Z. Guo, R. Xing, S. Liu, Z. Zhong, X. Ji, L. Wanga and P. Li, “Antifungal properties of Schiff bases of chitosan, N-substituted chitosan and quaternized chitosan”, Carbohydrate Research, 342, 1329–1332 (2007).
  • [6] R. Zhang, Q. Wang, Q. Li and C. Ma, “Syntheses and characterization of triorganotin(IV) complexes of Schiff base derive from 4-amino-5-phenyl-4H-1,2,4-triazole-3-thiol and 5-amino-1,3,4-thiadiazole-2-thiol with p-phthalaldehyde”, Inorganica Chimica Acta 362, 2762–2769 (2009).
  • [7] S.K. Bharti, G. Nath, R. Tilak and S.K. Singh, “Synthesis, anti-bacterial and anti-fungal activities of some novel Schiff bases containing 2,4-disubstituted thiazole ring”, European Journal of Medicinal Chemistry 45, 651–660 (2010).
  • [8] A. A. El-Sherif and T. M.A. Eldebss, “Synthesis, spectral characterization, solution equilibria, in vitro antibacterial and cytotoxic activities of Cu(II), Ni(II), Mn(II), Co(II) and Zn(II) complexes with Schiff base derived from 5-bromosalicylaldehyde and 2-aminomethylthiophene”, Spectrochim Acta A Mol Biomol Spectrosc, 79, 1803-1814 (2011).
  • [9] S. E.H. Etaiwa, D. M. Abd El-Aziza, E. H. Abd El-Zaherb and E. A. Ali, “Synthesis, spectral, antimicrobial and antitumor assessment of Schiff base derived from 2-aminobenzothiazole and its transition metal complexes”, Spectrochimica Acta Part A (2011).
  • [10] K. Nejati, Z. Rezvani and B. Massoumi, “Syntheses and investigation of thermal properties of copper complexes with azo-containing Schiff-base dyes”, Dyes and Pigments, 75, 653-657 (2007).
  • [11] H. Joshi, F. S. Kamounah, C. Gooijer, G. Zwan and L. Antonov, “Excited state intramolecular proton transfer in some tautomeric azo dyes and schiff bases containing an intramolecular hydrogen bond”, Journal of Photochemistry and Photobiology A: Chemistry, 152, 183–191 (2002).
  • [12] M. Bagherzadeh and M. Amini, “Synthesis, characterization and catalytic study of a novel iron(III)-tridentate Schiff base complex in sulfide oxidation by UHP”, Inorganic Chemistry Communications, 12, 21–25 (2009).
  • [13] A. Stamatisa, P. Doutsi, C. Vartzoumaa, K.C. Christoforidisb, Y. Deligiannakisb and M. Louloudi, “Epoxidation of olefins with H2O2 catalyzed by new symmetrical acetylacetone-based Schiff bases/Mn(II) homogeneous systems: A catalytic and EPR study”, Journal of Molecular Catalysis A: Chemical, 297, 44–53 (2009).
  • [14] X. Du, X. Yu, “Selective epoxidation of unfunctionalized olefins catalyzed by unsymmetric Mn(III)-Schiff base complexes”, Journal of Molecular Catalysis A: Chemical, 126, 109- 113 (1997).
  • [15] D. Chatterjee, S. Mukherjee and A. Mitra, “Epoxidation of olefins with sodium hypochloride catalysed by new Nickel II –Schiff base complexes”, Journal of Molecular Catalysis A: Chemical, 154, 5–8 (2000).
  • [16] R.I. Kureshy, N.H. Khan, S.H.R. Abdi, P. Iyer and A.K. Bhatt, “Enantioselective catalytic epoxidation of nonfunctionalized prochiral olefins by dissymmetric chiral Schiff base complerxes of Mn(III) and Ru(III) metal ions II”, Journal of Molecular Catalysis A: Chemical, 120, 101-108 (1997).
  • [17] Y. Li, X. Fu, B. Gong, X. Zou, X. Tu and J. Chen, “Synthesis of novel immobilized tridentate Schiff base dioxomolybdenum(VI) complexes as efficient and reusable catalysts for epoxidation of unfunctionalized olefins”, Journal of Molecular Catalysis A: Chemical, 322, 55–62 (2010).
  • [18] B. Ziyadanoğulları, D. Ceviziçi, H. Temel and R. Ziyadanoğulları, “Synthesis, characterization and structure effects on preconcentration and extraction of N,N’-bis-(salicylaldehydene)-1,4-bis-(p-aminophenoxy) butane towards some divalent cations”, Journal of Hazardous Materials, 150, 285–289 (2008).
  • [19] E. Köse Baran and S. Bağdat Yaşar, “Copper and Iron Determination with [N,N′-Bis(salicylidene)-2,2′-dimethyl-1,3-propanediaminato] in Edible Oils Without Digestion”, Journal of the American Oil Chemists, 87, 1389-1395 (2011).
  • [20] D. Kara, A. Fisher and S. J. Hill, “Determination of trace heavy metals in soil and sediments by atomic spectrometry following preconcentration with Schiff bases on Amberlite XAD-4”, Journal of Hazardous Materials, 165, 1165–1169 (2009).
  • [21] Z. Cimerman, N. Galic and B. Bosner, “The Schiff bases of salicylaldehyde and aminopyridines as highly sensitive analytical reagents”, Analytica Chimica Acta, 343, 145-153(1997).
  • [22] A. Afkhami, M. Abbasi-Tarighata and H. Khanmohammadi, “Simultaneous determination of Co2+, Ni2+, Cu2+ and Zn2+ ions in foodstuffs and vegetables with a new Schiff base using artificial neural Networks”, Talanta, 77, 995–1001(2009).
  • [23] L. R. Cárdenas, A. J. Leonel, N. M. B. Costa and F. P. Reis, “Zinc bioavailability in different beans as affected by cultivar type and cooking conditions”, Food Research International, 43, 573–581(2010).
  • [24] J. Cao, P.R. Henry, S.R. Davis, R.J. Cousins, R.D. Miles, R.C. Littell and C.B. Ammerman, “Relative bioavailability of organic zinc sources based on tissue zinc and metallothionein in chicks fed conventional dietary zinc concentrations”, Animal Feed Science and Technology,101, 161–170 (2002).
  • [25] L. Yanga, X. Yanga, J. Piaoa, Y. Tiana, P. Li, Y. Wanga and J. Wang, “Studies on zinc bioavailability from a representative diet in Chinese urban women of childbearing age using a double label stable isotope technique”, Journal of Trace Elements in Medicine and Biology, 19, 159–164(2005).
  • [26] W. A. House, “Trace element bioavailability as exemplified by iron and zinc”, Field Crops Research, 60, 115-141(1999).
  • [27] E. J. Llorent-Martinez, P. Ortega-Barrales, M.L. Fernandez-de Cordova, A. Dominguez-Vidal and A. Ruiz-Medina, “Investigation by ICP-MS of trace element levels in vegetable edible oils produced in Spain”, Food Chemistry, 127, 1257-1262 (2011).
  • [28] R. M. de Souza, B. M. Mathias, C. L. P. da Silveira and R. Q. Aucelio, “Inductively coupled plasma optical emission spectrometry for trace multi-element determination in vegetable oils, margarine and butter after stabilization with propan-1-ol and water”, Spectrochimica Acta Part B: Atomic Spectroscopy, 60, 711-715 (2005).
  • [29] P. L. Buldini, D. Ferri and J. L. Sharma, “Determination of some inorganic species in edible vegetable oils and fats by ion chromatography”, Journal of Chromatography, 789, 549-555 (1997).
  • [30] N. Zand, B. Z. Chowdry, F. B. Zotor, D. S. Wray, P. Amuna and F. S. Pullen, “Essential and trace element content of commerical infant foods in the UK”, Food Chemistry, 128, 123-128 (2011).
  • [31] M. Zeiner, I. Steffana and I.J.Cindric, “Determination of trace elements in olive oil by ICP-AES and ETA-AAS: A pilot study on the geographical characterization”, Microchemical Journal 81, 171– 176 (2005).
  • [32] D. Mendil, Ö. D. Uluözlü, M. Tüzen and M. Soylak, “Investigation of the levels of some element in edible oil samples produced in Turkey by atomic absorption spectrometry”, Journal of Hazardous Materials, 165, 724-728 (2009).
  • [33] L. S. Nunes, J. T.P. Barbosa, A. P. Fernandes, V. A. Lemos, W. N.L. dos Santos, M. G. A. Korn and L. S.G. Teixeira, “Multi-element determination of Cu, Fe, Ni and Zn content in vegetable oils samples by high-resolution continuum source atomic absorption spectrometry and microemulsion sample preparation”, Food Chemistry 127, 780–783 (2011).
  • [34] I. J. Cindric, M. Zeiner and I. Steffan, “Trace elemental characterization of edible olils by ICP-AES and GFAAS” Microchemical Journal, 85, 136-139 (2007).
  • [35] M. N. Matos Reyes and R. C. Campos, “Determination of copper and nickel in vegetable oils by direct sampling graphite furnace atomic absorption spectrometry”, Talanta 70, 929–932 (2006).
  • [36] T. G. Diaz, A. Guiberteau, M.D. Lopez Soto and J.M. Ortiz, “Determination of copper with 5,5-dimethylcyclohexane-1,2,3-trione 1,2-dioxime 3-thiosemicarbazone in olive oils by adsorptive stripping square wave voltammetry”, Food Chemistry 96, 156–162 (2006).
  • [37] G. Dugo, L. La Pera, G. L. La Torre and D. Giuffrida, “Determination of Cd(II), Cu(II), Pb(II), and Zn(II) content in commercial vegetable oils using derivative potentiometric stripping analysis”, Food Chemistry 87, 639–645 (2004).
  • [38] F. Lo Coco, L. Ceccon, L. Ciraolo and V. Novelli, “Determination of cadmium(II) and zinc(II) in olive oils by derivative potentiometric stripping analysis”, Food Control, 14, 55–59 (2003).
  • [39] K. Soliman and L. Zikovsky, “Determination of Br, Ca, Cl, Co, Cu, I, K, Mg, Mn, Na, Rb, S, Ti and V in Cereals, Oils, Sweeteners and Vegetables Sold in Canada by Neutron Activation Analysis”, Journal Of Food Composition and Analysis 12, 85-89 (1999).
  • [40] Morgan, E., Chemometrics: Experimental Design, Jhon Wiley & Sons Ltd, CHICHESTER, (1991).
  • [41] H. H. Perkampus, UV-VIS Spectroscopy And Its Applications, Springer Verlag, (1992)
  • [42] A.N. Anthemidis, V. Arvanitidis and J. A. Stratis, “On-line emulsion formation and multi-element analysis of edible oils by inductively coupled plasma atomic emission spectrometry”, Analytica Chimica Acta, 537, 271-278 (2005).
  • [43] M. Murillo, Z. Benzo, E. Marcano, C. Gomez, A. Garaboto and C. Marin, “Determination of copper, iron and nickel in edible oils using emulsified solutions by ICP-AES”, Journal of Analytical Atomic Spectrometry, 14, 815-820 (1999).
  • [44] A. Angioni, M. Cabitza, M. T. Russo and P. Caboni, “Influence of olive cultivars and period of harvest on the contest of Cu, Cd, Pb, and Zn in virgin olive oils”, Food Chemistry, 99, 525-529 (2006).
  • [45] M. Yağan Aşçı, A. Efendioğlu and B. Batı, “Solid phase extraction of cadmium in edible oils using zinc piperazindithiocarbamate and its determination by flame atomic absorption spectrometry”, Turkish Journal of Chemistry, 32, 431-440 (2008).
  • [46] B. Batı and H. Cesur, “Determination of copper in edible oils by atomic absorption spectrometry after lead piperazinedithiocarbamate solid-phase extraction and potassium cyanide back-extraction”, Analytical Sciences, 18, 1273-1274 (2002).