Naphthoquinone–thiazole hybrids bearing adamantane: Synthesis, antimicrobial, DNA cleavage, antioxidant activity, acid dissociation constant, and drug-likeness

Naphthoquinone–thiazole hybrids bearing adamantane: Synthesis, antimicrobial, DNA cleavage, antioxidant activity, acid dissociation constant, and drug-likeness

In this study, four novel naphthoquinone–thiazole hybrids bearing adamantane were synthesized byreaction of naphthoquinone–aroylthiourea derivatives with 1-adamantyl bromomethyl ketone in 75-85% yield and werecharacterized using 1H/13C NMR, FT-IR, and HRMS techniques. Various biological activities of the synthesizedcompounds, such as antibacterial, antifungal, DNA cleavage, and antioxidant activities, were screened. The compoundsshowed antibacterial activity against Escherichia coli, Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa,Enterococcus hirae, and Legionella pneumophila subsp. pneumophila strains with MIC values in the range of 4–64 μg/mLand antifungal activity against Candida albicans strains with MIC values in the range of 16–64 μg/mL. The compoundshad DNA cleavage activity at 250 and 500 μg/mL. Additionally, the antioxidant activity of the compounds was assessedbased on the radical scavenging effect of the stable DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical and thecompounds exhibited acceptable antioxidant activity. The acid dissociation constants (pKa) of the compounds weredetermined potentiometrically in 30% (v/v) dimethyl sulfoxide–water at an ionic background of 0.1 mol L-1 NaCl, at 25± 0.1 °C, and the HYPERQUAD computer program was used to calculate the pKa values from the data obtained frompotentiometric titrations. Prediction of the drug-likeness properties of the compounds was performed with the use ofthe MolSoft website, and the compounds had promising drug-likeness model scores within a range of 1.09–1.56.

___

  • [1] Kuete V, Mbaveng AT, Sandjo LP, Zeino M, Efferth T. Cytotoxicity and mode of action of a naturally occurring naphthoquinone, 2-acetyl-7-methoxynaphtho [2, 3-b] furan-4, 9-quinone towards multifactorial drug-resistant cancer cells. Phytomedicine 2007; 33: 62-68. [CrossRef]
  • [2] Aminin D, Polonik S. 1, 4-Naphthoquinones: Some biological properties and application. Chem Pharm Bull. 2020; 68(1): 46-57. [CrossRef]
  • [3] Alferova VA, Shuvalov MV, Korshun VA, Tyurin AP. Naphthoquinone-derived polyol macrolides from natural sources. Russ Chem Bull. 2019; 68(5): 955-966. [CrossRef]
  • [4] Li K, Wang B, Zheng L, Yang K, Li Y, Hu M, He D. Target ROS to induce apoptosis and cell cycle arrest by 5, 7-dimethoxy-1, 4-naphthoquinone derivative. Bioorg Med Chem Lett. 2018; 28(3): 273-277. [CrossRef]
  • [5] Gemili M, Nural Y, Keleş E, Aydıner B, Seferoğlu N, Ülger M, Şahin E, Erat S, Seferoğlu Z. Novel highly functionalized 1, 4-naphthoquinone 2-iminothiazole hybrids: Synthesis, photophysical properties, crystal structure, DFT studies, and anti(myco)bacterial/antifungal activity. J Mol Struct. 2019; 1196: 536-546. [CrossRef]
  • [6] Sánchez-Calvo JM, Barbero GR, Guerrero-Vásquez G, Durán AG, Macías M, Rodríguez-Iglesias MA, Molinillo JMG, Macías FA. Synthesis, antibacterial and antifungal activities of naphthoquinone derivatives: a structure–activity relationship study. Med Chem Res. 2016; 25(6): 1274-1285. [CrossRef]
  • [7] Nural Y, Ozdemir S, Doluca S, Demir B, Serkan Yalcin M, Atabey H, Kanat B, Erat S, Sari H, Seferoglu Z. Synthesis, biological properties, and acid dissociation constant of novel naphthoquinone–triazole hybrids. Bioorg Chem. 2020; 105: 104441. [CrossRef]
  • [8] Vale VV, Cruz JN, Viana GMR, Póvoa MM, Brasil DDSB, Dolabela MF. Naphthoquinones isolated from Eleutherine plicata herb: In vitro antimalarial activity and molecular modeling to investigate their binding modes. Med Chem Res. 2020; 29(3): 487-494. [CrossRef]
  • [9] Mathiyazhagan K, Kumaran A, Arjun P. Isolation of natural naphthoquinones from juglans regia and in vitro antioxidant and cytotoxic studies of naphthoquinones and the synthetic naphthofuran derivatives. Russ J Bioorg Chem. 2018; 44(3): 346-353. [CrossRef]
  • [10] Abbas G, Hassan Z, Al-Harrasi A, Al-Adawi A, Ali M. Synthesis, biological evaluation, molecular docking and structure-activity relationship studies of halogenated quinone and naphthoquinone derivatives. J Mol Struct. 2019; 1195: 462-469. [CrossRef]
  • [11] Mohamady S, Gibriel AA, Ahmed MS, Hendy MS, Naguib BH. Design and novel synthetic approach supported with molecular docking and biological evidence for naphthoquinonehydrazinotriazolothiadiazine analogs as potential anticancer inhibiting topoisomerase-IIB. Bioorg Chem. 2020; 96: 103641. [CrossRef]
  • [12] Alimohammadi A, Mostafavi H, Mahdavi M. Thiourea Derivatives Based on the Dapsone‐ Naphthoquinone Hybrid as Anticancer and Antimicrobial Agents: In Vitro Screening and Molecular Docking Studies. ChemistrySelect. 2020; 5(2): 847-852. [CrossRef]
  • [13] Manickam M, Boggu PR, Cho J, Nam YJ, Lee SJ, Jung SH. Investigation of chemical reactivity of 2-alkoxy- 1, 4-naphthoquinones and their anticancer activity. Bioorg Med Chem Lett. 2018; 28(11): 2023-2028. [CrossRef]
  • [14] Ullah S, Akter J, Kim SJ, Yang J, Park Y, Chun P, Moon HR. The tyrosinase-inhibitory effects of 2-phenyl- 1, 4-naphthoquinone analogs: importance of the (E)-β-phenyl-α, β-unsaturated carbonyl scaffold of an endomethylene type. Med Chem Res. 2019; 28(1): 95-103. [CrossRef]
  • [15] González A, Becerra N, Kashif M, González M, Cerecetto H, Aguilera E, Nogueda-Torres B, Chacón- Vargas KF, Zarate-Ramos JJ, Castillo-Velázquez U, Salas CO, Gildardo Rivera G, Vázquez K. In vitro and in silico evaluations of new aryloxy-1, 4-naphthoquinones as anti-Trypanosoma cruzi agents. Med Chem Res. 2020; 29: 665-674. [CrossRef]
  • [16] Wu Q, Er‐bu, A, Liang X, Luan S, Wang Y, Yin Z, He C, Yin L, Zou Y, Li L, Song, X. Evaluation of antioxidant and anticancer activities of naphthoquinones‐enriched ethanol extracts from the roots of Onosma hookeri Clarke. var. longiforum Duthie. Food Sci Nutr. 2020; 8(8): 4320-4329. [CrossRef]
  • [17] Sharma PC, Bansal KK, Sharma A, Sharma D, Deep A. Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur J Med Chem. 2020; 188: 112016. [CrossRef]
  • [18] Arshadi S, Vessally E, Edjlali L, Hosseinzadeh-Khanmiri R, Ghorbani-Kalhor E. N-Propargylamines: versatile building blocks in the construction of thiazole cores. Beilstein J Org Chem. 2017; 13(1): 625-638. [CrossRef]
  • [19] Arora P, Narang R, Nayak SK, Singh SK, Judge V. 2, 4-Disubstituted thiazoles as multitargated bioactive molecules. Med Chem Res. 2016; 25(9): 1717-1743. [CrossRef]
  • [20] Ayati A, Emami S, Asadipour A, Shafiee A, Foroumadi A. Recent applications of 1, 3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur J Med Chem. 2015; 97: 699-718. [CrossRef]
  • [21] Pawar CD, Sarkate AP, Karnik KS, Bahekar SS, Pansare DN, Shelke RN, Jawale CS, Shinde DB. Synthesis and antimicrobial evaluation of novel ethyl 2-(2-(4-substituted) acetamido)-4-subtituted-thiazole-5- carboxylate derivatives. Bioorg Med Chem Lett. (2016); 26(15): 3525-3528. [CrossRef]
  • [22] Nural Y, Gemili M, Ulger M, Sari H, De Coen LM, Sahin E. Synthesis, antimicrobial activity and acid dissociation constants of methyl 5, 5-diphenyl-1-(thiazol-2-yl) pyrrolidine-2-carboxylate derivatives. Bioorg Med Chem Lett. 2018; 28(5): 942-946. [CrossRef]
  • [23] Nural Y, Gemili M, Yabalak E, De Coen LM, Ulger M. Green synthesis of highly functionalized octahydropyrrolo [3, 4-c] pyrrole derivatives using subcritical water, and their anti (myco) bacterial and antifungal activity. Arkivoc. 2018; 5: 51-64. [CrossRef]
  • [24] Nural, Y. Synthesis, antimycobacterial activity, and acid dissociation constants of polyfunctionalized 3- [2-(pyrrolidin-1-yl) thiazole-5-carbonyl]-2H-chromen-2-one derivatives. Monatsh Chem. 2018; 149(10): 1905-1918. [CrossRef]
  • [25] Madni M, Hameed S, Ahmed MN, Tahir MN, Al-Masoudi NA, Pannecouque C. Synthesis, crystal structure, anti-HIV, and antiproliferative activity of new pyrazolylthiazole derivatives. Med Chem Res. 2017; 26(10): 2653-2665. [CrossRef]
  • [26] Suma VR, Sreenivasulu R, Rao MVB, Subramanyam M, Ahsan MJ, Alluri R, Rao KRM. Design, synthesis, and biological evaluation of chalcone-linked thiazole-imidazopyridine derivatives as anticancer agents. Med Chem Res. 2020: 29(9); 1643-1654. [CrossRef]
  • [27] Zhang J, Xi J, He R, Zhuang R, Kong L, Fu L, Zhao Y, Zhang C, Zeng L, Lu J, Tao R, Liu Z, Zhu H, Liu S. Discovery of 3-(thiophen/thiazole-2-ylthio) pyridine derivatives as multitarget anticancer agents. Med Chem Res. 2019; 28(10): 1633-1647. [CrossRef]
  • [28] Abu-Melha S, Edrees MM, Salem HH, Kheder NA, Gomha SM, Abdelaziz MR. Synthesis and Biological Evaluation of Some Novel Thiazole-Based Heterocycles as Potential Anticancer and Antimicrobial Agents. Molecules (2019); 24(3): 539. [CrossRef]
  • [29] Nikalje APG, Tiwari SV, Sarkate AP, Karnik KS. Imidazole-thiazole coupled derivatives as novel lanosterol 14-α demethylase inhibitors: Ionic liquid mediated synthesis, biological evaluation and molecular docking study. Med Chem Res. 2018; 27(2): 592-606. [CrossRef]
  • [30] Kaur G, Singh JV, Gupta MK, Bhagat K, Gulati HK, Singh A, Bedi PMS, Singh H, Sharma, S. Thiazole-5- carboxylic acid derivatives as potent xanthine oxidase inhibitors: design, synthesis, in vitro evaluation, and molecular modeling studies. Med Chem Res. 2020; 29(1): 83-93. [CrossRef]
  • [31] Wanka L, Iqbal K, Schreiner PR. The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives. Chem Rev. 2013; 113(5): 3516-3604. [CrossRef]
  • [32] Štimac A, Šekutor M, Mlinarić-Majerski K, Frkanec L, Frkanec R. Adamantane in drug delivery systems and surface recognition. Molecules 2017; 22(2): 297. [CrossRef]
  • [33] Meloun M, Pilařová L, Pfeiferová A, Pekárek T. Method of UV-Metric and pH-Metric Determination of Dissociation Constants of Ionizable Drugs: Valsartan. J Solution Chem. 2019; 48(8-9): 1266-1286. [CrossRef]
  • [34] Gemili M, Sari H, Ulger M, Sahin E, Nural Y. Pt (II) and Ni (II) complexes of octahydropyrrolo [3, 4-c] pyrrole N-benzoylthiourea derivatives: Synthesis, characterization, physical parameters and biological activity. Inorg Chim Acta 2017; 463: 88-96. [CrossRef]
  • [35] Gorgun K, Sakarya HC, Ozkutuk M. The synthesis, characterization, acid dissociation, and theoretical calculation of several novel benzothiazole schiff base derivatives. J Chem Eng Data 2015; 60(3): 594-601. [CrossRef]
  • [36] Babić S, Horvat AJ, Pavlović DM, Kaštelan-Macan M. Determination of pKa values of active pharmaceutical ingredients. TrAC Trends Anal Chem. 2017; 26(11): 1043-1061. [CrossRef]
  • [37] Manallack DT. The pKa distribution of drugs: application to drug discovery. Perspect Med Chem. 2017; 1: 25–38. [CrossRef]
  • [38] El-Sherif AA, Shehata MR, Shoukry MM, Mahmoud N. Potentiometric Study of Speciation and Thermodynamics of Complex Formation Equilibria of Diorganotin (IV) Dichloride with 1-(2-Aminoethyl) piperazine. (2016) J Solution Chem. 2016; 45(3): 410-430. [CrossRef]
  • [39] Ozkutuk M, Ogretir C, Arslan T, Kandemirli F, Köksoy B. Acid dissociation constants of some novel isatin thiosemicarbazone derivatives. J Chem Eng Data 2010; 55(8): 2714-2718. [CrossRef]
  • [40] Gemili M, Nural Y, Keleş E, Aydıner B, Seferoğlu N, Şahin E, Sarı E, Seferoğlu Z. Novel 1, 4- naphthoquinone N-aroylthioureas: Syntheses, crystal structure, anion recognition properties, DFT studies and determination of acid dissociation constants. J Mol Liq. 2018; 269: 920-932. [CrossRef]
  • [41] Grochowski DM, Uysal S, Aktumsek A, Granica S, Zengin G, Ceylan R, Locatelli M, Tomczyk M. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical profile of Potentilla thuringiaca. Phytochem Lett. 2017; 20: 365-372. [CrossRef]
  • [42] Nural Y, Gemili M, Seferoglu N, Sahin E, Ulger M, Sari H. Synthesis, crystal structure, DFT studies, acid dissociation constant, and antimicrobial activity of methyl 2-(4-chlorophenyl)-7a-((4-chlorophenyl) carbamothioyl)-1-oxo-5,5-diphenyl-3-thioxo-hexahydro-1H-pyrrolo[1, 2-e]imidazole-6-carboxylate. J Mol Struct. 2018; 1160: 375-382. [CrossRef]
  • [43] El-Sherif AA, Shoukry MM, Abd-Elgawad MM. Protonation equilibria of some selected α-amino acids in DMSO–water mixture and their Cu (II)-complexes. J Solution Chem. 2013; 42(2): 412-427. [CrossRef]
  • [44] Altun Y, Köseoğlu F, Demirelli H, Yılmaz İ, Çukurovalı A, Kavak N. Potentiometric studies on nickel (II), copper (II) and zinc (II) metal complexes with new schiff bases containing cyclobutane and thiazole groups in 60% dioxane-water mixture. J Braz Chem Soc. 2009; 20(2): 299-308. [CrossRef]
  • [45] Jia CY, Li JY, Hao GF, Yang GF. A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discovery Today 2020; 25(1): 248-258. [CrossRef]
  • [46] Tian S, Wang J, Li Y, Li D, Xu L, Hou T. The application of in silico drug-likeness predictions in pharmaceutical research. Adv Drug Delivery Rev. 2015; 86: 2-10. [CrossRef]
  • [47] L.L.C. MolSoft. MolSoft Molecules in Silico (2020) http://molsoft.com/mprop/, Accessed 26th August 2020.
  • [48] Desai NC, Kotadiya GM, Trivedi AR. Studies on molecular properties prediction, antitubercular and antimicrobial activities of novel quinoline based pyrimidine motifs. Bioorg Med Chem Lett. 2014; 24(14): 3126-3130. [CrossRef]
  • [49] Dinis TCP, Madeira VMC, Almeida LM. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophy. 1994; 315(1): 161-169. [CrossRef]
  • [50] Pettit LD. (1992) Academic Software, Sourby Farm, Timble, Otley, LS21 2PW, UK.
Journal of research in pharmacy (online)-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: Marmara Üniversitesi
Sayıdaki Diğer Makaleler

Effects of particle size and tapped density on the content uniformity of repaglinide - metformin fixed dose tablet combination

Bahar KÖKSEL ÖZGEN, Nagehan SARRAÇOĞLU, Asuman AYBEY DOĞANAY, Onur PINARBAŞLI, Gülistan Pelin GURBETOĞLU

Evaluation of in vitro antioxidants activities, hepatoprotective and haematological effects of ethanol extract of Anthocleista vogelii stem bark (AVSB) on carbon tetrachloride (CCl4) induced rats

Robert UROKO, Chinedu NWUKE, Amarachi AGBAFOR, Josephat OKWOR

Mechanism of antinociceptive action of syringic acid

Mehmet Evren OKUR, Ayşe Arzu ŞAKUL

Higher alpha-synuclein aggregate density does not lead to more severe dopaminergic cell loss in the AAV-mediated overexpression model of Parkinson’s Disease: A timecourse study

İnci KAZKAYASI, Sevgi UĞUR MUTLUAY, Elif ÇINAR, Gül YALÇIN ÇAKMAKLI, Bülent ELİBOL, Banu Cahide TEL, Gökçen TELLİ, Esen SAKA

Quality by design-based evaluation and optimization of ceftibuten flexible dispersible tablet design with high drug loading using Design-Expert software

Saravana Perumal GOVINDAN, Senthamarai RAJAGOPALAN, Anbarasu KUMAR

Naphthoquinone–thiazole hybrids bearing adamantane: Synthesis, antimicrobial, DNA cleavage, antioxidant activity, acid dissociation constant, and drug-likeness

Yahya NURAL, Sadin ÖZDEMİR, Mustafa Serkan YALÇIN, Ayşegül DOĞAN, Hayati SARI

Structure-based virtual screening and molecular dynamics simulations for detecting novel candidates as FGFR1 inhibitors

Güneş ÇOBAN

Benzilic acid based new 2-aryl-1,3-thiazolidin-4-one derivatives: Synthesis and anticancer activity

Özlen GÜZEL AKDEMİR, Kübra DEMİR YAZICI

Chemical composition and cytotoxic potency of essential oil from Seseli petraeum M. Bieb. (Apiaceae)

Alev ÖNDER, Ahsen Sevde ÇINAR

Quali/quantitative research on herbal supplements containing black elder (Sambucus nigra L.) fruits

Erdem YEŞİLADA, Etil GÜZELMERİÇ, Cansel ÇELİK, Nisa Beril ŞEN, Mehmet Ali OÇKUN