Mechanism of antinociceptive action of syringic acid

Mechanism of antinociceptive action of syringic acid

Syringic acid presents various biological properties such as antioxidant, anti-inflammatory, anticancer,and other activities. The present experiment aimed to investigate the effect of the oral administration of syringic acid(10, 50, and 100 mg/kg) on its possible nociceptive response using hot-plate and tail-flick assay in the Balb-C micemodel. The mice were pre-treated with 5 mg/kg atropine 15 min before, 1mg/kg mecamylamine 20 min before, 1mg/kgketanserin 30 min before, 1 mg/kg ondansetron 30 min before, 1mg/kg yohimbine 30 min before, 1 mg/kg prazosin 30min before and 5 mg/kg naloxone 15min before the administration of the Syringic acid. Dose-dependent antinociceptiveactivity of syringic acid was reported for 50 and 100 mg/kg doses in tail-flick and hot-plate assays, respectively. Infurther, mecamylamine, yohimbine, and naloxone significantly reversed syringic acid-induced response to thermalstimuli in tail-flick and hot-plate assays, respectively. From the data, it was confirmed that syringic acid presents centralantinociceptive effects which may be coordinated by supraspinal/spinal mediated cholinergic, opioidergic, andadrenergic, inflection.

___

  • [1] Sneddon LU. Evolution of Nociception and Pain: Evidence From Fish Models. Philos. Trans R Soc B Biol Sci. 2019; 374: 20190290. [CrossRef]
  • [2] Sneddon LU, Elwood RW, Adamo SA, Leach MC. Defining and Assessing Animal Pain. Anim Behav. 2014; 97: 201– 212. [CrossRef]
  • [3] van Rensburg R, Reuter H. An Overview of Analgesics: NSAIDs, Paracetamol, and Topical Analgesics Part 1. South African Fam Pract. 2019; 61: S4–S10. [CrossRef]
  • [4] Cregg R, Russo G, Gubbay A, Branford R, Sato H. Pharmacogenetics of Analgesic Drugs. Br J Pain. 2013; 7(4): 189– 208. [CrossRef]
  • [5] Power I. An Update on Analgesics. Br J Anaesth. 2011; 107: 19–24. [CrossRef]
  • [6] Peterson NC, Nunamaker EA, Turner PV. To Treat or Not to Treat: The Effects of Pain on Experimental Parameters. Comp Med. 2017; 67: 469–482.
  • [7] Hooijmans CR, Draper D, Ergün M, Scheffe GJ. The Effect of Analgesics on Stimulus Evoked Pain-like Behaviour in Animal Models for Chemotherapy Induced Peripheral Neuropathy- A Meta-Analysis. Sci Rep. 2019; 9: 17549. [CrossRef]
  • [8] Suokas AK, Sagar DR, Mapp PI, Chapman V, Walsh DA. Design, Study Quality and Evidence of Analgesic Efficacy in Studies of Drugs in Models of OA Pain: A Systematic Review And A Meta-Analysis. Osteoarthr Cartil. 2014; 22(9): 1207–1223. [CrossRef]
  • [9] Frias B, Merighi A. Capsaicin, Nociception and Pain. Molecules. 2016; 21(6): 797. [CrossRef]
  • [10] Dubin AE, Patapoutian A. Nociceptors: The Sensors of The Pain Pathway. J Clin Invest. 2010; 120(11): 3760–3772. [CrossRef]
  • [11] Price DD, Dubner R. Mechanisms of First and Second Pain in The Peripheral and Central Nervous Systems. J Invest Dermatol. 1977; 69: 167–171. [CrossRef]
  • [12] Mitsi V, Zachariou V. Modulation of Pain, Nociception, and Analgesia by The Brain Reward Center. Neuroscience. 2016; 338: 81–92. [CrossRef]
  • [13] Falk S, Dickenson AH. Pain and Nociception: Mechanisms of Cancer-Induced Bone Pain. J Clin Oncol. 2014; 32: 1647– 1654. [CrossRef]
  • [14] Tracey WD Jr. Nociception. Curr Biol. 2017; 27(4): R129-R133. [CrossRef]
  • [15] Srinivasulu C, Ramgopal M, Ramanjaneyulu G, Anuradha CM, Kumar CS. Syringic acid (SA) ‒ A Review of Its Occurrence, Biosynthesis, Pharmacological and Industrial Importance. Biomed Pharmacother. 2018; 108: 547–557. [CrossRef]
  • [16] Ramachandran V, Raja B. Protective Effects of Syringic Acid Against Acetaminophen-Induced Hepatic Damage in Albino Rats. J Basic Clin Physiol Pharmacol. 2010; 21: 369–386. [CrossRef]
  • [17] Ren J, Yang M, Xu F, Chen J, Ma S. Acceleration of Wound Healing Activity with Syringic Acid in Streptozotocin Induced Diabetic Rats. Life Sci. 2019; 233: 116728. [CrossRef]
  • [18] Gias ZT, Afsana F, Debnath P, Alam MS, Ena TN, Hossain MH, et al. A Mechanistic Approach to HPLC Analysis, Antinociceptive, Anti-inflammatory and Postoperative Analgesic Activities of Panch Phoron in Mice. BMC Complement Med Ther. 2020; 20: 102. [CrossRef]
  • [19] Bouhlali EDT, Hmidani A, Bourkhis B, Khouya T, Ramchoun M, Filali-Zegzouti Y, et al. Phenolic Profile and Antiinflammatory Activity of Four Moroccan Date (Phoenix Dactylifera L.) Seed Varieties. Heliyon. 2020; 6: e03436. [CrossRef]
  • [20] Cikman O, Soylemez O, Ozkan OF, Kiraz HA, Sayar I, Ademoglu S, et al. Antioxidant Activity of Syringic Acid Prevents Oxidative Stress in L-arginine-Induced Acute Pancreatitis: An Experimental Study on Rats. Int Surg. 2015; 100: 891–896. [CrossRef]
  • [21] Choi J, Shin K-M, Park H-J, Jung H-J, Kim H-J, Lee YS, et al. Anti-Inflammatory and Antinociceptive Effects of Sinapyl Alcohol and its Glucoside Syringin. Planta Med. 2004; 70: 1027–1032. [CrossRef]
  • [22] Giorno TBS, Moreira IGDS, Rezende CM, Fernandes PD. New β N-octadecanoyl-5-hydroxytryptamide: Antinociceptive Effect and Possible Mechanism of Action in Mice. Sci Rep. 2018; 8: 10027. [CrossRef]
  • [23] Mirza AC, Panchal SS. Safety Evaluation of Syringic Acid: Subacute Oral Toxicity Studies in Wistar Rats. Heliyon. 2019; 5: e02129. [CrossRef]
  • [24] Oliveira PA, Capim SL, Gonçalves GM, Laureano-Melo R, Côrtes WDS, Vasconcellos MLAA, et al. Pharmacological Evaluation Underlying The Antinociceptive Activity of Two New Hybrids NSAIDs Tetrahydropyran Derivatives. Fundam Clin Pharmacol. 2020; 34: 321–335. [CrossRef]
  • [25] Fiorino DF, Garcia-Guzman M. Muscarinic Pain Pharmacology: Realizing The Promise of Novel Analgesics by Overcoming Old Challenges. Handb Exp Pharmacol. 2012; 208: 191-221. [CrossRef]
  • [26] Vincler M. Neuronal Nicotinic Receptors as Targets for Novel Analgesics. Expert Opin Investig Drugs.2005; 14(10): 1191-1198. [CrossRef]
  • [27] Sudo RT, Hayashida K, Santos AN, Kawatani M, Monteiro CE, Moreira RD, et al. Novel Agonist of α 4 β 2 * Neuronal Nicotinic Receptor with Antinociceptive Efficacy in Rodent Models of Acute and Chronic Pain. J Pain Res. 2018; 11: 2453-2462. [CrossRef]
  • [28] Woodcock J, Witter J, Dionne RA. Stimulating The Development of Mechanism-Based, Individualized Pain Therapies. Nat Rev Drug Discov. 2007; 6: 703–710. [CrossRef]
  • [29] Llorca-Torralba M, Borges G, Neto F, Mico JA, Berrocoso E. Noradrenergic Locus Coeruleus Pathways in Pain Modulation. Neuroscience. 2016; 338: 93–113. [CrossRef]
  • [30] Tanabe M, Takasu K, Kasuya N, Shimizu S, Honda M, Ono H. Role of Descending Noradrenergic System and Spinal α2-adrenergic Receptors in The Effects of Gabapentin on Thermal and Mechanical Nociception After Partial Nerve Injury in The Mouse. Br J Pharmacol. 2005; 144: 703–714. [CrossRef]
  • [31] Gutierrez T, Nackley AG, Neely MH, Freeman KG, Edwards GL, Hohmann AG. Effects of Neurotoxic Destruction of Descending Noradrenergic Pathways on Cannabinoid Antinociception in Models of Acute and Tonic Nociception. Brain Res. 2003; 987: 176–185. [CrossRef]
  • [32] Abubakar A, Nazifi AB, Odoma S, Shehu S, Danjuma NM. Antinociceptive Activity of Methanol Extract of Chlorophytum Alismifolium Tubers in Murine Model of Pain: Possible Involvement of α2-adrenergic Receptor and KATP Channels. J Tradit Complement Med. 2020; 10: 1–6. [CrossRef]
  • [33] Romero TRL, Pacheco DDF, Duarte IDG. Xylazine Induced Central Antinociception Mediated by Endogenous Opioids and μ-opioid Receptor, But Not δ-or κ-opioid Receptors. Brain Res. 2013; 1506: 58–63. [CrossRef]
  • [34] Pavlovic ZW, Bodnar RJ. Opioid Supraspinal Analgesic Synergy Between The Amygdala and Periaqueductal Gray in Rats. Brain Res. 1998; 779: 158–169. [CrossRef]
  • [35] Dalmagro AP, Camargo A, Severo Rodrigues AL, Zeni ALB. Involvement of PI3K/Akt/GSK-3β Signaling Pathway in The Antidepressant-like and Neuroprotective Effects of Morus Nigra and Its Major Phenolic, Syringic acid. Chem Biol Interact. 2019; 314: 108843. [CrossRef]
  • [36] Martini LH, Jung F, Soares FA, Rotta LN, Vendite DA, Frizzo ME, et al. Naturally Occurring Compounds Affect Glutamatergic Neurotransmission in Rat Brain. Neurochem Res. 2007; 32: 1950–1956. [CrossRef]
  • [37] Ismail NI, Ming-Tatt L, Lajis N, Akhtar MN, Akira A, Perimal EK, et al. Antinociceptive Effect of 3-(2,3- dimethoxyphenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one in Mice Models of Induced Nociception. Molecules. 2016;21: 1077. [CrossRef]
  • [38] Dalmagro AP, Camargo A, Zeni ALB. Morus Nigra and Its Major Phenolic, Syringic Acid, Have Antidepressant-Like and Neuroprotective Effects In Mice. Metab Brain Dis. 2017; 32: 1963–1973. [CrossRef]
  • [39] Ogut E, Akcay G, Yildirim FB, Derin N, Aslan M. The Influence of Syringic Acid Treatment on Total Dopamine Levels of The Hippocampus and on Cognitive Behavioral Skills. Int J Neurosci. 2020; 17: 1–9. [CrossRef]
  • [40] Rezaee L, Alizadeh AM, Haghparast A. Role of Hippocampal Dopamine Receptors in The Antinociceptive Responses Induced by Chemical Stimulation of The Lateral Hypothalamus in Animal Model of Acute Pain. Brain Res. 2020; 1734: 146759. [CrossRef]
  • [41] Ahmed F, Shahid IZ, Biswas UK, Roy BA, Das AK, Choudhuri MSK. Anti-inflammatory, Antinociceptive, and Neuropharmacological Activities of Clerodendron Viscosum. Pharm Biol. 2007; 45: 587–593. [CrossRef]
  • [42] Bektaş N, Arslan R. The Centrally-Mediated Mechanisms of Action of Ferulic Acid–Induced Antinociception. Marmara Pharm J. 2016; 20: 303–310.
  • [43] Arslan R, Bektas N. Evaluation of the Centrally-Acting Mechanisms of Some Non-Steroidal Anti-inflammatory Drugs. Am J Pharm Heal Res. 2015; 3: 191–202.
  • [44] Arslan R, Aydin S, Nemutlu Samur D, Bektas N. The Possible Mechanisms of Protocatechuic Acid-induced Central Analgesia. Saudi Pharm J. 2018; 26: 541–545. [CrossRef]
  • [45] De Caro C, Raucci F, Saviano A, Cristiano C, Casillo GM, Di Lorenzo R, et al. Pharmacological and Molecular Docking Assessment of Cryptotanshinone as Natural-Derived Analgesic Compound. Biomed Pharmacother. 2020; 126: 110042. [CrossRef]
Journal of research in pharmacy (online)-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: Marmara Üniversitesi
Sayıdaki Diğer Makaleler

Evaluation of in vitro antioxidants activities, hepatoprotective and haematological effects of ethanol extract of Anthocleista vogelii stem bark (AVSB) on carbon tetrachloride (CCl4) induced rats

Robert UROKO, Chinedu NWUKE, Amarachi AGBAFOR, Josephat OKWOR

Quali/quantitative research on herbal supplements containing black elder (Sambucus nigra L.) fruits

Erdem YEŞİLADA, Etil GÜZELMERİÇ, Cansel ÇELİK, Nisa Beril ŞEN, Mehmet Ali OÇKUN

Antioxidant, anticholinesterase activities and polyphenolic constituents of cones of algerian fir (Abies numidica) by LCESI- MS/MS with chemometric approach

Mehmet ÖZTÜRK, Ebru EROL, Mehmet Emin DURU, Abdulselam ERTAŞ, Habiba MOKADDEM-DAROUI, Maya BELHADJ MOSTEFA, Fatma AYDOĞMUŞ ÖZTÜRK, Ahmed KABOUCHE, Zahia KABOUCHE

Higher alpha-synuclein aggregate density does not lead to more severe dopaminergic cell loss in the AAV-mediated overexpression model of Parkinson’s Disease: A timecourse study

İnci KAZKAYASI, Sevgi UĞUR MUTLUAY, Elif ÇINAR, Gül YALÇIN ÇAKMAKLI, Bülent ELİBOL, Banu Cahide TEL, Gökçen TELLİ, Esen SAKA

Chemical composition and cytotoxic potency of essential oil from Seseli petraeum M. Bieb. (Apiaceae)

Alev ÖNDER, Ahsen Sevde ÇINAR

Effect of food supplement of humic origin on the hematological and biochemical parameters in the Cr (VI) exposed rats

Oksana BUCHKO, Viktoriia HAVRYLIAK, Andriy PYLYPETS, Taras BUCHKO

Benzilic acid based new 2-aryl-1,3-thiazolidin-4-one derivatives: Synthesis and anticancer activity

Özlen GÜZEL AKDEMİR, Kübra DEMİR YAZICI

Quality by design-based evaluation and optimization of ceftibuten flexible dispersible tablet design with high drug loading using Design-Expert software

Saravana Perumal GOVINDAN, Senthamarai RAJAGOPALAN, Anbarasu KUMAR

Structure-based virtual screening and molecular dynamics simulations for detecting novel candidates as FGFR1 inhibitors

Güneş ÇOBAN

Naphthoquinone–thiazole hybrids bearing adamantane: Synthesis, antimicrobial, DNA cleavage, antioxidant activity, acid dissociation constant, and drug-likeness

Yahya NURAL, Sadin ÖZDEMİR, Mustafa Serkan YALÇIN, Ayşegül DOĞAN, Hayati SARI