In vitro effects of methylsulphonylmethane in MCF7 cells

In vitro effects of methylsulphonylmethane in MCF7 cells

Methylsulphonylmethane (MSM) is the best source of organic sulfur with the best bio-utilization in thebody. MSM provides Sulphur support to fragile tissues such as hair. It provides elasticity to connective tissue. It isrequired for collagen production. Despite its many advantages, there are only few published papers about the anticancerresearch regard to MSM, no known studies on Bioinformatics Analysis and the possible mechanisms such an effect remainunknown. Therefore, we aimed to investigate the anticancer effects of MSM associated with a bioinformatics analysis onthe breast cancer cell MCF7 and to give the information about possible molecular mechanisms. A cytotoxicity assay wasperformed using the MTT method. The cell migration analysis was performed using wound healing analysis. Anapoptotic effect was performed by DNA fragmentation analysis. A Bioinformatics analysis was performed using a proteindata bank. Study results indicated that this component exhibited an anti-proliferative effect as based on dosage increasesand it showed apoptotic effects at high concentrations on MCF7 cells and results were supported by previous studies.Consequently, a detailed study of the molecular mechanisms of this matter would allow for the identification of possiblenew targets for breast cancer treatments

___

  • [1] Kim Y, Kim D, Lim H, Baek D, Shin H, Kim J. The Anti-Inflammatory Effects of Methylsulfonylmethane on Lipopolysaccharide-Induced Inflammatory Responses in Murine Macrophages. Biol Pharm Bull. 2009; 2: 651–656. [CrossRef]
  • [2] Kamel R, El Morsy EM. Hepatoprotective Effect of Methylsulfonylmethane against Carbon Tetrachloride-Induced Acute Liver Injury in Rats. Arch Pharm Res. 2013; 36(9): 1140–1148. [CrossRef]
  • [3] Jafari N, Bohlooli S, Mohammedi S, Mazani M. Cytotoxicity of Methylsulfonylmethane on Gastrointestinal (AGS, HepG2, and KEYSE-30) Cancer Cell Lines. J Gastrointest Cancer. 2012; 43: 420–425. [CrossRef]
  • [4] Kim JH, Shin HJ, Ha HL, Park YH, Kwon TH, Jung MR, Moon HB, Cho ES, Son HY, Yu DY. Methylsulfonylmethane Suppresses Hepatic Tumor Development through Activation of Apoptosis. World J Hepatol. 2014; 6(2): 98–106. [CrossRef]
  • [5] Karabay AZ, Aktan F, Sunguroğlu A, Büyükbingöl Z. Methylsulfonylmethane Modulates Apoptosis of LPS/IFN-ΓActivated RAW 264.7 Macrophage-Like Cells by Targeting P53, Bax, Bcl-2, Cytochrome C and PARP Proteins. Immunopharmacology Immunotoxicol. 2014; 36(6): 379-89. [CrossRef]
  • [6] Kim DN, Joung YH, Darvin P, Kang DY, SP N, Byon HJ, Cho KH, Park KD, Lee HK, Yang YM. Methylsulfonylmethane Enhances BMP-2-Induced Osteoblast Differentiation in Mesenchymal Stem Cells. Mol Med Rep. 2016; 14: 460-466. [CrossRef]
  • [7] Karabay AZ, Koç A, Özkan T, Hekmatshoar Y, Sunguroğlu A, Aktan F, Buyukbingol Z Methylsulfonylmethane Induces P53 Independent Apoptosis in HCT-116 Colon Cancer Cells. Int J Mol Sci. 2016; 17(1123): 1-19. [CrossRef]
  • [8] Lim EJ, Hong DY, Park JH, Joung YH, Darvin P, Kim SY, Na YM, Hwang TS, Ye SK, Moon ES, Cho BW, Do Park K, Lee HK, Park T, Yang YM. Methylsulfonylmethane Suppresses Breast Cancer Growth by Down-Regulating STAT3 and STAT5b Pathways. PLOS ONE. 2012; 7(4): e33361. [CrossRef]
  • [9] P NS, Kang DY, Kim BJ, Joung YH, Darvin P, Byun HJ, Kim JG, Park JU, Yang YM. Methylsulfonylmethane Induces G1 Arrest and Mitochondrial Apoptosis in YD-38 Gingival Cancer Cells. Anticancer Res. 2017; 37: 1637-1646. [CrossRef]
  • [10] Nipin S, Darvin P, Yoo YB, Joung YH, Kang DY, Kim DN, Hwang TS, Kim SY, Kim WS, Lee HK, Cho BW, Kim HS, Park KD, Park JH, Chang SH, Yang YM. The Combination of Methylsulfonylmethane and Tamoxifen Inhibits the Jak2/STAT5b Pathway and Synergistically Inhibits Tumor Growth and Metastasis in ER-Positive Breast Cancer Xenografts. BMC Cancer. 2015; 5: 474. [CrossRef]
  • [11] Wang Xi, Guo Z. The Role of Sulfur in Platinum Anticancer Chemotherapy. Anticancer Agents Med Chem 2007; 7: 19-34. [CrossRef]
  • [12] Hohn A, Jung T, Grune T. Pathophysiological importance of aggregated damaged proteins. Free Radic Biol Med. 2014; 71: 70-89. [CrossRef]
  • [13] Townsend DM, Tew KD, Tapiero H. The Importance of Glutathione in Human Disease. Biomed Pharmacotherapy. 2003; 57(3): 145-155. [CrossRef]
  • [14] Ryu CS, Kwak HC, Lee JY, Oh SJ, Phoung NT, Kang KW, Kim SK. Elevation of cysteine consumption in tamoxifenresistant MCF-7 cells. Biochem Pharmacol. 2013; 85(2): 197-206. [CrossRef]
  • [15] Bounous G. Whey protein concentrate (WPC) and glutathione modulation in cancer treatment. Anticancer Res. 2000; 20(6C): 4785-92.
  • [16] Sarkhani E, Najafzadeh N, Tata N, Dastan M, Mazani M, Arzanlou M. Molecular mechanisms of Methylsulfonylmethane and allicin in the inhibition of CD44± breast cancer cells growth. J Funct Foods. 2017; 39: 50- 57. [CrossRef]
  • [17] Caron JM, Caron JM. Methyl Sulfone Blocked Multiple Hypoxia- and Non-Hypoxia-Induced Metastatic Targets in Breast Cancer Cells and Melanoma Cells. PLOS ONE. 2015; 10: e0141565. [CrossRef]
  • [18] Kang DY, Darvin P, Yoo YB, Joung YH, SP N, Byon HJ, Yang YM. Methylsulfonylmethane Inhibits HER2 Expression through STAT5b in Breast Cancer Cells. Int J Oncol. 2016; 48: 836-842. [CrossRef]
  • [19] Ebisuzaki K. Aspirin and Methylsulfonylmethane (MSM): A Search for Common Mechanisms, With Implications for Cancer Prevention. Anticancer Res. 2003; 23(1A): 453–8.
  • [20] Caron JM, Monteagudo L, Sanders M, Bannon M, Deckers PJ. Methyl Sulfone Manifests Anticancer Activity in a Metastatic Murine Breast Cancer Cell Line and in Human Breast Cancer Tissue–Part 2: Human Breast Cancer Tissue. Chemotherapy. 2013; 59(1): 24–34. [CrossRef]
  • [21] D'Alessio M, De Nicola M, Coppola S, Gualandi G, Pugliese L, Cerella C, Cristofanon S, Civitareale P, Ciriolo MR, Bergamaschi A, Magrini A, Ghibelli L. Oxidative Bax dimerization promotes its translocation to mitochondria independently of apoptosis. FASEB J. 2005; 19(11): 1504–1506. [CrossRef]
  • [22] Gilmore AP, Metcalfe AD, Romer LH, Streuli CH. Integrin-mediated survival signals regulate the apoptotic function of Bax through its conformation and subcellular localization. J Cell Biol. 2000; 149(2): 431–446. [CrossRef]
  • [23] Yin C, Knudson CM, Korsmeyer SJ, Van Dyke T. Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature. 1997; 385(6617): 637–640. [CrossRef]
  • [24] Ghibelli L, Coppola S, Fanelli C, Rotilio G, Civitareale P, Scovassi A. I., Ciriolo MR. Glutathione depletion causes cytochrome c release even in the absence of cell commitment to apoptosis. FASEB J. 1999; 13: 2031–2036. [CrossRef]
Journal of research in pharmacy (online)-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: Marmara Üniversitesi
Sayıdaki Diğer Makaleler

Development and evaluation of a pH triggered in situ ocular gel of brimonidine tartrate

Saravana BHARATH, Arjunan KARUPPAIAH, Karthik SIRAM, Sivaram HARIHARAN, Ramesh SANTHANAM, Sankar VEINTRAMUTHU

Synthesis, characterization and anticancer activity of novel hydrazide-hydrazones derived from ethyl paraben

M. İhsan HAN, Pınar ATALAY, Nalan İMAMOĞLU, Ş. Güniz KÜÇÜKGÜZEL

Oxidative stress and urinary system damage in fructoseinduced rat model of metabolic syndrome: Effect of calorie restriction and exercise

Özge ÇEVİK, Göksel ŞENER, Tarık Emre ŞENER, Şule ÇETİNEL

Novel piperazine substituted indole derivatives: Synthesis, anti-inflammatory and antioxidant activities and molecular docking

Tülay ÇOBAN, Tunca Gül ALTUNTAŞ, Aziz BAYDAR, Zühal KILIÇ-KURT, Cemre ACAR, Sezen YILMAZ-SARIALTIN

Formulation and evaluation of antifungal activity of gel of crude methanolic extract of leaves of Ipomoea carnea Jacq

Damir SULJEVIĆ, Kusum KAUSHIK, Ram Babu SHARMA, Abhıshek SHARMA

Antiasthmatic activity of 2-piperidone by selective animal models

Vani MAMILLAPALLI, Abdul Rahaman SHAIK, Prameela Rani AVULA

In vitro effects of methylsulphonylmethane in MCF7 cells

Işıl YILDIRIM, Çağdaş AKTAN

Nano-embedded microparticles based dry powder inhaler for lung cancer treatment

Nazimuddin CHISHTI, Mohamed Hassan DEHGHAN

Comparative study of the anti-inflammatory, antioxidant and urease inhibitory activities of Eryngium kotschyi Boiss. and E. campestre L. var. virens (Link) Weins extracts

Erdem YEŞİLADA, İrem ATAY BALKAN, Esra ACAR ŞAH, Galip AKAYDIN, Turgut TAŞKIN

Natural deep eutectic solvents ultrasound-assisted extraction (NADES-UAE) of trans-cinnamaldehyde and coumarin from cinnamon bark [Cinnamomum burmannii (Nees & T. Nees) Blume]

Abdul MUN’IM, Widya Dwi ARYATI, Anis NADHIRA, Dea FEBIANLI, Fransisca FRANSISCA