Oxidative stress and urinary system damage in fructoseinduced rat model of metabolic syndrome: Effect of calorie restriction and exercise

Oxidative stress and urinary system damage in fructoseinduced rat model of metabolic syndrome: Effect of calorie restriction and exercise

The aim of this study was to investigate the effects of calorie restriction (CR) and swimming exercise (SW)on oxidative injury in kidney and bladder tissues, in rats with metabolic syndrome (MS). 3-months old rats were dividedinto five; Control, MS, MS+CR, MS+SW, MS+CR+SW. The metabolic syndrome model was created using 10% fructosesolution in drinking water for three months. Afterwards, SW and 40% CR were applied for six weeks. Blood glucosemeasurements were performed at the beginning, the third month and the end of experiment. After decapitation, blood,kidney and bladder samples were collected. Cytokine levels, antioxidant and oxidative stress parameters wereexamined. There was a remarkable change in blood glucose levels in MS+CR+SW group. Fructose-induced increasedTNF-α and decreased ADP levels in plasma were reversed in CR, SW, and CR+SW groups. MDA levels were increased,while SOD and ADP levels were decreased in renal and bladder tissues in MS group. CR and SW significantly reversedall parameters in both tissues. Moreover, caspase activity increased in both tissues in MS group. CR decreased thecaspase activity in kidney tissue, and in bladder tissues caspase activity significantly decreased with both CR and SW.Western blot analysis showed an increased caspase-3 protein expression in both tissues which was reversed by CR, SW,and CR+SW. The results of our study showed that MS disrupts the balance of pro/anti-inflammatory cytokines inplasma and causes oxidant damage in urinary tissues. Calorie restriction and exercise are protective against the damagecaused by MS

___

  • [1] Spahis S, Borys JM, Levy E. Metabolic Syndrome as a Multifaceted Risk Factor for Oxidative Stress. Antioxid Redox Signal. 2017; 26(9): 445-61. [CrossRef]
  • [2] Kovesdy CP, Furth S, Zoccali C, World Kidney Day Steering C. Obesity and kidney disease: Hidden consequences of the epidemic. Indian J Nephrol. 2017; 27(2): 85-92. [CrossRef]
  • [3] Chang Y, Ryu S, Choi Y, Zhang Y, Cho J, Kwon MJ, Hyun YY, Lee KB, Kim H, Jung HS, Yun KE, Ahn J, Rampal S, Zhao D, Suh BS, Chung EC, Shin H, Pastor-Barriuso R, Guallar E. Metabolically Healthy Obesity and Development of Chronic Kidney Disease: A Cohort Study. Ann Intern Med. 2016; 164(5): 305-312. [CrossRef]
  • [4] La Russa D, Giordano F, Marrone A, Parafati M, Janda E, Pellegrino D. Oxidative Imbalance and Kidney Damage in Cafeteria Diet-Induced Rat Model of Metabolic Syndrome: Effect of Bergamot Polyphenolic Fraction. Antioxidants (Basel). 2019; 8(3). [CrossRef]
  • [5] Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978; 52: 302-310. [CrossRef]
  • [6] Mylroie AA, Collins H, Umbles C, Kyle J. Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate. Toxicol Appl Pharmacol. 1986; 82(3): 512-520. [CrossRef]
  • [7] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72: 248-254. [CrossRef]
  • [8] Guize L, Pannier B, Thomas F, Bean K, Jego B, Benetos A. Recent advances in metabolic syndrome and cardiovascular disease. Arch Cardiovasc Dis. 2008; 101(9): 577-583. [CrossRef]
  • [9] Huang PL. eNOS, metabolic syndrome and cardiovascular disease. Trends Endocrinol Metab. 2009; 20(6): 295-302. [CrossRef]
  • [10] Gorbachinsky I, Akpinar H, Assimos DG. Metabolic syndrome and urologic diseases. Rev Urol. 2010; 12(4): e157-80.
  • [11] He Q, Wang Z, Liu G, Daneshgari F, MacLennan GT, Gupta S. Metabolic syndrome, inflammation and lower urinary tract symptoms: possible translational links. Prostate Cancer Prostatic Dis. 2016; 19(1): 7-13. [CrossRef]
  • [12] McCracken E, Monaghan M, Sreenivasan S. Pathophysiology of the metabolic syndrome. Clin Dermatol. 2018; 36(1): 14-20. [CrossRef]
  • [13] Pouliot MC, Despres JP, Lemieux S, Moorjani S, Bouchard C, Tremblay A, et al. Waist circumference and abdominal sagittal diameter: best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am J Cardiol. 1994; 73(7): 460-468. [CrossRef]
  • [14] Okamoto Y. Adiponectin provides cardiovascular protection in metabolic syndrome. Cardiol Res Pract. 2011; 2011: 313179. [CrossRef]
  • [15] Rodriguez A, Ezquerro S, Mendez-Gimenez L, Becerril S, Fruhbeck G. Revisiting the adipocyte: a model for integration of cytokine signaling in the regulation of energy metabolism. Am J Physiol Endocrinol Metab. 2015; 309(8): E691-714. [CrossRef]
  • [16] Clarkson PM. Antioxidants and physical performance. Crit Rev Food Sci Nutr. 1995; 35(1-2): 131-41. [CrossRef]
  • [17] Botezelli JD, Cambri LT, Ghezzi AC, Dalia RA, PP MS, Ribeiro C, et al. Different exercise protocols improve metabolic syndrome markers, tissue triglycerides content and antioxidant status in rats. Diabetol Metab Syndr. 2011; 3: 35. [CrossRef]
  • [18] Kannan K, Jain SK. Oxidative stress and apoptosis. Pathophysiology. 2000; 7(3): 153-63. [CrossRef]
Journal of research in pharmacy (online)-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: Marmara Üniversitesi
Sayıdaki Diğer Makaleler

In vitro effects of methylsulphonylmethane in MCF7 cells

Işıl YILDIRIM, Çağdaş AKTAN

Compression force effect on characteristics of loratadinesuccinic acid cocrystal prepared by slurry method

Dwi SETYAWAN, Abhimata PARAMANANDANA, V. Eres ERFADRIN, Retno SARI, Diajeng Putri PARAMITA

Comparative study of the anti-inflammatory, antioxidant and urease inhibitory activities of Eryngium kotschyi Boiss. and E. campestre L. var. virens (Link) Weins extracts

Erdem YEŞİLADA, İrem ATAY BALKAN, Esra ACAR ŞAH, Galip AKAYDIN, Turgut TAŞKIN

Nano-embedded microparticles based dry powder inhaler for lung cancer treatment

Nazimuddin CHISHTI, Mohamed Hassan DEHGHAN

Antiasthmatic activity of 2-piperidone by selective animal models

Vani MAMILLAPALLI, Abdul Rahaman SHAIK, Prameela Rani AVULA

Novel piperazine substituted indole derivatives: Synthesis, anti-inflammatory and antioxidant activities and molecular docking

Tülay ÇOBAN, Tunca Gül ALTUNTAŞ, Aziz BAYDAR, Zühal KILIÇ-KURT, Cemre ACAR, Sezen YILMAZ-SARIALTIN

Natural deep eutectic solvents ultrasound-assisted extraction (NADES-UAE) of trans-cinnamaldehyde and coumarin from cinnamon bark [Cinnamomum burmannii (Nees & T. Nees) Blume]

Abdul MUN’IM, Widya Dwi ARYATI, Anis NADHIRA, Dea FEBIANLI, Fransisca FRANSISCA

Development and evaluation of a pH triggered in situ ocular gel of brimonidine tartrate

Saravana BHARATH, Arjunan KARUPPAIAH, Karthik SIRAM, Sivaram HARIHARAN, Ramesh SANTHANAM, Sankar VEINTRAMUTHU

Assessment of rational use of drugs using World Health Organization prescribing and patient care indicators in a tertiary care hospital

VinodKumar MUGADA, Sai Srinivas KAMIREDDI, Rajkiran KOLAKOTA, Abdul RASHEED

Oxidative stress and urinary system damage in fructoseinduced rat model of metabolic syndrome: Effect of calorie restriction and exercise

Özge ÇEVİK, Göksel ŞENER, Tarık Emre ŞENER, Şule ÇETİNEL